在基于三次样条插值的局部均值分解方法(local mean decomposition based on cubic spline interpolation,CSI-LMD)中,三次样条插值在获取被测信号的包络线时缺乏灵活性,是影响该方法分解信号准确性的一个重要因素。有理样条插值作为三...在基于三次样条插值的局部均值分解方法(local mean decomposition based on cubic spline interpolation,CSI-LMD)中,三次样条插值在获取被测信号的包络线时缺乏灵活性,是影响该方法分解信号准确性的一个重要因素。有理样条插值作为三次样条插值的一般形式,可以通过其极点参数调节插值曲线的松紧度,灵活适应不同类型的被测信号。为提高LMD分解信号的准确性,采用有理样条插值代替三次样条插值,并结合二分法原理确定有理样条插值函数的最优极点参数值。通过对单一电能质量扰动信号和复合电压暂降扰动信号的时频分析,验证了基于有理样条插值的LMD方法(LMD based on rational spline interpolation,RSI-LMD)在检测和分析电压暂降扰动信号方面的有效性。展开更多
基金安徽省自然科学基金(the Natural Science Foundation of Anhui Province of China under Grant No.03046102)浙江教育厅资助科研课题(the Research Project of Department of Education of Zhejiang ProvinceChina under Grant No.20050718)
基金Supported by the Nation Natural Science Foundation of China(11472063)the Provincial Natural Science Research Program of Higher Education Institutions of Anhui Province(KJ2013A194,KJ2013Z230)Anhui Province Colleges and Universities Outstanding Youth Talent Support Program(gxyq ZD2016285)
文摘在基于三次样条插值的局部均值分解方法(local mean decomposition based on cubic spline interpolation,CSI-LMD)中,三次样条插值在获取被测信号的包络线时缺乏灵活性,是影响该方法分解信号准确性的一个重要因素。有理样条插值作为三次样条插值的一般形式,可以通过其极点参数调节插值曲线的松紧度,灵活适应不同类型的被测信号。为提高LMD分解信号的准确性,采用有理样条插值代替三次样条插值,并结合二分法原理确定有理样条插值函数的最优极点参数值。通过对单一电能质量扰动信号和复合电压暂降扰动信号的时频分析,验证了基于有理样条插值的LMD方法(LMD based on rational spline interpolation,RSI-LMD)在检测和分析电压暂降扰动信号方面的有效性。