A homogeneous and lattice self-reconfigurable robot module is designed, and each module is composed of a center body and six connection planes which can independently rotate. A module can independently connect or disc...A homogeneous and lattice self-reconfigurable robot module is designed, and each module is composed of a center body and six connection planes which can independently rotate. A module can independently connect or disconnect with other modules, and then change its connection by collaborating with other modules. We discuss how to describe and discover configuration of robot. Furthermore, we describe its motion planning based on the appraisal function and the adjacency matrix which is effective to solve the computationally difficult problem and optimize the system motion path during the self-reconfiguration process. Finally, a simulation experiment is demonstrated, which verifies the correctness of locomotion method.展开更多
Heavy-load transfer robots are widely used in automobile production and machinery manufacturing to improve production efficiency.In order to meet the needs of large billet transfer,a 4-DOF transfer robot is designed i...Heavy-load transfer robots are widely used in automobile production and machinery manufacturing to improve production efficiency.In order to meet the needs of large billet transfer,a 4-DOF transfer robot is designed in this paper,which consists of parallel four-bar mechanisms.The Jacobian matrix referring to the mapping matrix from the joint velocity to the operating space velocity of the transfer robot can be solved by the differential-vector method.The mean value of the Jacobian matrix condition number in the workspace is used as the global performance index of the robot velocity and the optimization goal.The constraint condition is established based on the actual working condition.Then the linkage length optimization is carried out to decrease the length of the linkage and to increase the global performance index of velocity.The total length of robot rods is reduced by 6.12%.The global performance index of velocity is improved by 45.15%.Taking the optimized rod length as the mechanism parameter,the distribution of the motion space of the transfer robot is obtained.Finally,the results show that the proposed method for establishing the Jacobian matrix of the lower-mobility robot and for the optimization of the rods based on the velocity global performance index is accurate and effective.The workspace distribution of the robot meets the design requirements.展开更多
Palletizing robot technology has been applied more and more extensively in logistics automation field.But there are some limitations in the current single-arm palletizing robot that it cannot do effective work in the ...Palletizing robot technology has been applied more and more extensively in logistics automation field.But there are some limitations in the current single-arm palletizing robot that it cannot do effective work in the process of moving back to the taking-end and the mechanical arm has so many freedoms that its control system is relatively complex.Based on the translating cam principle,a novel palletizing robot is designed.The horizontal movement of the palletizing mechanical arm is controlled by changeable outer slides,and the vertical movement is controlled by partitioned up-and-down spindles.To improve palletizing efficiency,the single palletizing mechanical arm is changed into multi-arm.Moreover,to improve its kinematic properties,the acceleration operating performance,joint driving force and palletizing trajectory are optimized through the multi-objective delaminating sequence method.According to the optimization results,the 3D model of the multi-arm palletizing robot is built in Pro/E,and the kinematic simulation is made.The simulation results show that the novel mechanism and optimization parameters are rational and feasible.This novel palletizing robot has the advantages of cam mechanism,so it simplifies the driving mode of palletizing movement and can lower the requirements for controlling system.At the same time,it can increase palletizing efficiency further by adding mechanical arms.展开更多
This paper proposes two novel rescue robots,including a cutter robot and a jack robot,which are aimed to contribute to rescue activities such as to cut through obstacles and to jack up debris in dangerous sites and na...This paper proposes two novel rescue robots,including a cutter robot and a jack robot,which are aimed to contribute to rescue activities such as to cut through obstacles and to jack up debris in dangerous sites and narrow spaces,where a rescue team can not work or approach.Firstly,a multilinked tracked rescue robot platform composed of connected crawler vehicles is developed,which has high mobility on irregular terrain and ability to move into narrow collapsed structures.Then,the cutter robot and jack robot are designed on the basis of rescue robot platform equipped with a cutter or a jack mechanism and corresponding manipulators in the front segment.The cutter refitted by an angle grinder is able to cut through 10 mm diameter steel bars.The electric jack mechanism designed based on multiple layers screw sleeves structure can lift up 300 kg load from 70 mm to 400 mm.Experimental results validate the capability of the two rescue robots.展开更多
A novel modular self-reconfigurable robot called UBot is presented.This robot consists of severalstandard modules.The module is cubic structure based on double rotational DOF,and has four connect-ing surfaces that can...A novel modular self-reconfigurable robot called UBot is presented.This robot consists of severalstandard modules.The module is cubic structure based on double rotational DOF,and has four connect-ing surfaces that can connect to adjacent modules.A hook-type mechanism is designed,which can quick-ly and reliably connect to or disconnect from adjacent module.This mechanism is self-locking after con-nected,and energy-saving.To achieve small overall size and mass,compact mechanical structures andelectrical systems are adopted in modular design.The modules have embedded power supply and adoptwireless communication,which can avoid cable-winding and improve flexibility of locomotion and self-re-configuration.A group of UBot modules can adapt their configuration and function to the changing envi-ronment without external help by changing their connections and positions .The basic motion and self-re-configuration are proposed,and the experiments of worm-like locomotion are implemented.展开更多
The robot consists of a quadruped mechanism and two active dual-wheel casters possesses the advantages of wheeled and legged mechanism, and can quickly move on the relatively plane ground with the wheeled mechanism, a...The robot consists of a quadruped mechanism and two active dual-wheel casters possesses the advantages of wheeled and legged mechanism, and can quickly move on the relatively plane ground with the wheeled mechanism, and can walk on the extremely uneven terrain with the legged mechanism. The effectiveness of the motion design of the hybrid robot is iHustrated by simulation results.展开更多
文摘A homogeneous and lattice self-reconfigurable robot module is designed, and each module is composed of a center body and six connection planes which can independently rotate. A module can independently connect or disconnect with other modules, and then change its connection by collaborating with other modules. We discuss how to describe and discover configuration of robot. Furthermore, we describe its motion planning based on the appraisal function and the adjacency matrix which is effective to solve the computationally difficult problem and optimize the system motion path during the self-reconfiguration process. Finally, a simulation experiment is demonstrated, which verifies the correctness of locomotion method.
基金supported by the National Key R&D Program of China(No.2018YFB1307900)the Natural Science Foundation of Shanxi Province(Nos.201901D211009,201901D211010)the Technology In⁃novation Foundation of Shanxi University(No.2019L 0177).
文摘Heavy-load transfer robots are widely used in automobile production and machinery manufacturing to improve production efficiency.In order to meet the needs of large billet transfer,a 4-DOF transfer robot is designed in this paper,which consists of parallel four-bar mechanisms.The Jacobian matrix referring to the mapping matrix from the joint velocity to the operating space velocity of the transfer robot can be solved by the differential-vector method.The mean value of the Jacobian matrix condition number in the workspace is used as the global performance index of the robot velocity and the optimization goal.The constraint condition is established based on the actual working condition.Then the linkage length optimization is carried out to decrease the length of the linkage and to increase the global performance index of velocity.The total length of robot rods is reduced by 6.12%.The global performance index of velocity is improved by 45.15%.Taking the optimized rod length as the mechanism parameter,the distribution of the motion space of the transfer robot is obtained.Finally,the results show that the proposed method for establishing the Jacobian matrix of the lower-mobility robot and for the optimization of the rods based on the velocity global performance index is accurate and effective.The workspace distribution of the robot meets the design requirements.
基金Supported by Natural Science Foundation of Shandong Province,China(No.ZR2010EM007)Shandong Province Science and Technology Development Plan(No.2010GGX10402)
文摘Palletizing robot technology has been applied more and more extensively in logistics automation field.But there are some limitations in the current single-arm palletizing robot that it cannot do effective work in the process of moving back to the taking-end and the mechanical arm has so many freedoms that its control system is relatively complex.Based on the translating cam principle,a novel palletizing robot is designed.The horizontal movement of the palletizing mechanical arm is controlled by changeable outer slides,and the vertical movement is controlled by partitioned up-and-down spindles.To improve palletizing efficiency,the single palletizing mechanical arm is changed into multi-arm.Moreover,to improve its kinematic properties,the acceleration operating performance,joint driving force and palletizing trajectory are optimized through the multi-objective delaminating sequence method.According to the optimization results,the 3D model of the multi-arm palletizing robot is built in Pro/E,and the kinematic simulation is made.The simulation results show that the novel mechanism and optimization parameters are rational and feasible.This novel palletizing robot has the advantages of cam mechanism,so it simplifies the driving mode of palletizing movement and can lower the requirements for controlling system.At the same time,it can increase palletizing efficiency further by adding mechanical arms.
基金Supported by the National High Technology Research and Development Programme of China(No.#2012AA041505)
文摘This paper proposes two novel rescue robots,including a cutter robot and a jack robot,which are aimed to contribute to rescue activities such as to cut through obstacles and to jack up debris in dangerous sites and narrow spaces,where a rescue team can not work or approach.Firstly,a multilinked tracked rescue robot platform composed of connected crawler vehicles is developed,which has high mobility on irregular terrain and ability to move into narrow collapsed structures.Then,the cutter robot and jack robot are designed on the basis of rescue robot platform equipped with a cutter or a jack mechanism and corresponding manipulators in the front segment.The cutter refitted by an angle grinder is able to cut through 10 mm diameter steel bars.The electric jack mechanism designed based on multiple layers screw sleeves structure can lift up 300 kg load from 70 mm to 400 mm.Experimental results validate the capability of the two rescue robots.
基金Supported by the National High Technology Research and Development Programme of China(2006AA04Z220); the National Natural Science Foundation of China(60705027);Partially Supported by Progranl for Changjiang SchoLars and Innovative Research Team in University(PCSIRT)(IRT0423).
文摘A novel modular self-reconfigurable robot called UBot is presented.This robot consists of severalstandard modules.The module is cubic structure based on double rotational DOF,and has four connect-ing surfaces that can connect to adjacent modules.A hook-type mechanism is designed,which can quick-ly and reliably connect to or disconnect from adjacent module.This mechanism is self-locking after con-nected,and energy-saving.To achieve small overall size and mass,compact mechanical structures andelectrical systems are adopted in modular design.The modules have embedded power supply and adoptwireless communication,which can avoid cable-winding and improve flexibility of locomotion and self-re-configuration.A group of UBot modules can adapt their configuration and function to the changing envi-ronment without external help by changing their connections and positions .The basic motion and self-re-configuration are proposed,and the experiments of worm-like locomotion are implemented.
基金Sponsored by Hi-Tech Research and Development Program of China(Grant No. 2001AA422380)
文摘The robot consists of a quadruped mechanism and two active dual-wheel casters possesses the advantages of wheeled and legged mechanism, and can quickly move on the relatively plane ground with the wheeled mechanism, and can walk on the extremely uneven terrain with the legged mechanism. The effectiveness of the motion design of the hybrid robot is iHustrated by simulation results.