To reduce the vibration in the suspension, semi active suspension system was employed. And its CARMA model was built. Two adaptive control schemes, the minimum variance self tuning control algorithm and the pole con...To reduce the vibration in the suspension, semi active suspension system was employed. And its CARMA model was built. Two adaptive control schemes, the minimum variance self tuning control algorithm and the pole configuration self tuning control algorithm, were proposed. The former can make the variance of the output minimum while the latter can make dynamic behavior satisfying. The stability of the two schemes was analyzed. Simulations of them show that the acceleration in the vertical direction has been reduced greatly. The purpose of reducing vibration is realized. The two schemes can reduce the vibration in the suspension and have some practicability.展开更多
The vibration control in the frequency domain is significant.Therefore,an active vibration control in frequency domain is studied in this paper.It is generally known that piezo-intelligent structures possess satisfact...The vibration control in the frequency domain is significant.Therefore,an active vibration control in frequency domain is studied in this paper.It is generally known that piezo-intelligent structures possess satisfactory performances in the area of vibration control,and macro-fiber composites(MFCs)with high sensitivity and deformability are widely applied in engineering.So,this paper uses the MFC patches and designs a control method based on the pole placement method,and the natural frequency of the beam can be artificially designed.MFC patches are bonded on the top and bottom surfaces of the beam structure to act as the actuators and sensors.Then,the finite element method(FEM)is used to formulate the equation of motion,and the pole placement based on the out-put feedback method is used to design the active controller.Finally,the effectiveness of the active control method is verified.展开更多
The pneumatic rotary position system, in which an electro-pneumatic proportional flow valve controled a rotary cylinder, was studied, and its mathematical model was built. The model indicated that the controlled pneum...The pneumatic rotary position system, in which an electro-pneumatic proportional flow valve controled a rotary cylinder, was studied, and its mathematical model was built. The model indicated that the controlled pneumatic system had disadvantages such as inherent non-linearity and variations of system parameters with working points. In order to improve the dynamic performance of the system, feed forward compensation self-tuning pole-placement strategy was adopted to place the poles of the system in a desired position in real time, and a recursive least square method with fixed forgetting factors was also used in the parameter estimation. Experimental results show that the steady state error of the pneumatic rotary position system is within 3% and the identified system parameters can be converged in 5 s. Under different loads, the controlled system has an excellent tracking performance and robustness of anti-disturbance.展开更多
文摘To reduce the vibration in the suspension, semi active suspension system was employed. And its CARMA model was built. Two adaptive control schemes, the minimum variance self tuning control algorithm and the pole configuration self tuning control algorithm, were proposed. The former can make the variance of the output minimum while the latter can make dynamic behavior satisfying. The stability of the two schemes was analyzed. Simulations of them show that the acceleration in the vertical direction has been reduced greatly. The purpose of reducing vibration is realized. The two schemes can reduce the vibration in the suspension and have some practicability.
基金supported by the National Natural Science Foundation of China(Nos.11802069,11761131006)the China Postdoctoral Science Foundation(No.3236310534)+1 种基金the Heilongjiang Provincial Postdoctoral Science Foundation(Nos.002020830603,LBHTZ2008)the China Fundamental Research Funds for the Central Universities(No.GK2020260225).
文摘The vibration control in the frequency domain is significant.Therefore,an active vibration control in frequency domain is studied in this paper.It is generally known that piezo-intelligent structures possess satisfactory performances in the area of vibration control,and macro-fiber composites(MFCs)with high sensitivity and deformability are widely applied in engineering.So,this paper uses the MFC patches and designs a control method based on the pole placement method,and the natural frequency of the beam can be artificially designed.MFC patches are bonded on the top and bottom surfaces of the beam structure to act as the actuators and sensors.Then,the finite element method(FEM)is used to formulate the equation of motion,and the pole placement based on the out-put feedback method is used to design the active controller.Finally,the effectiveness of the active control method is verified.
基金Project(50375034) supported by the National Natural Science Foundation of China
文摘The pneumatic rotary position system, in which an electro-pneumatic proportional flow valve controled a rotary cylinder, was studied, and its mathematical model was built. The model indicated that the controlled pneumatic system had disadvantages such as inherent non-linearity and variations of system parameters with working points. In order to improve the dynamic performance of the system, feed forward compensation self-tuning pole-placement strategy was adopted to place the poles of the system in a desired position in real time, and a recursive least square method with fixed forgetting factors was also used in the parameter estimation. Experimental results show that the steady state error of the pneumatic rotary position system is within 3% and the identified system parameters can be converged in 5 s. Under different loads, the controlled system has an excellent tracking performance and robustness of anti-disturbance.