On lunar exploration missions, the rovers which can move and explore directly are considered by various agency like NASA (National Aeronautics and Space Administration), JAXA (Japan Aerospace Exploration Agency), ...On lunar exploration missions, the rovers which can move and explore directly are considered by various agency like NASA (National Aeronautics and Space Administration), JAXA (Japan Aerospace Exploration Agency), ESA (European Space Agency). Lunar rovers are required to move on rough terrains such as craters and rear cliffs where it is scientifically very important to explore. However, there is a problem that the rovers have possibility of stack because of the lunar surface is covered with loose soil named Regolith. Therefore, this paper investigates a mechanism of kinetic behavior between the wheels of the exploration rovers and loose soil. And then, this paper proposed a flexible wheel to solve like that problems. The flexible wheel has the surface which can be changed flexibly toward rough terrain. Running experiments on loose soil which imitated regolith were carried out to observe the traversability of the flexible wheel using slip ratio. Traversality of flexible wheel was better than the circular rigid wheel. The authors believe that stress distribution is important. The stress distribution of the flexible wheels is horizontally long and stress value is small. However, the stress distribution can be changed by loaded more weight. Therefore, the relationship between the stress and the running performance was considered using this differential stress distribution. In experiments, the authors used the flexible wheel with simple structure (3 limbs). From these considerations, the relationship between the stress of the flexible wheel and the running performance was described.展开更多
This paper develops a numerical model for wheel-rail noise analysis in the time-domain. This model for wheel-rail noise is based on vehicle-track coupling dynamics considering the effect of flexible wheelsets and trac...This paper develops a numerical model for wheel-rail noise analysis in the time-domain. This model for wheel-rail noise is based on vehicle-track coupling dynamics considering the effect of flexible wheelsets and track, and a transient wheel-rail noise prediction method. This model can approximatively characterize the components of vibration and noise in the frequency range up to 3.5 kHz. The wheel-rail forces are calculated and shown in both time and frequency domains by using the vehicle- track coupling dynamic model. Then the vibration and sound of the flexible wheelset are calculated by the transient finite element- boundary element (FE-BE) prediction model at 300 kin/h, in which the effects of random irregularity and discrete supporting excitation are considered. The numerical results calculated by using the present model are discussed. The present model is also used to calculate the effect of corrugation with wavelengths of 40 mm to 300 mm on wheel-rail noise. The numerical results can be useful for academic research and engineering application to railway noise and vibration.展开更多
文摘On lunar exploration missions, the rovers which can move and explore directly are considered by various agency like NASA (National Aeronautics and Space Administration), JAXA (Japan Aerospace Exploration Agency), ESA (European Space Agency). Lunar rovers are required to move on rough terrains such as craters and rear cliffs where it is scientifically very important to explore. However, there is a problem that the rovers have possibility of stack because of the lunar surface is covered with loose soil named Regolith. Therefore, this paper investigates a mechanism of kinetic behavior between the wheels of the exploration rovers and loose soil. And then, this paper proposed a flexible wheel to solve like that problems. The flexible wheel has the surface which can be changed flexibly toward rough terrain. Running experiments on loose soil which imitated regolith were carried out to observe the traversability of the flexible wheel using slip ratio. Traversality of flexible wheel was better than the circular rigid wheel. The authors believe that stress distribution is important. The stress distribution of the flexible wheels is horizontally long and stress value is small. However, the stress distribution can be changed by loaded more weight. Therefore, the relationship between the stress and the running performance was considered using this differential stress distribution. In experiments, the authors used the flexible wheel with simple structure (3 limbs). From these considerations, the relationship between the stress of the flexible wheel and the running performance was described.
基金Project supported by the National Natural Science Foundation of China (Nos. U1434201 and 51475390), the National Key Technology R&D Program of China (Nos. 2016YFB1200503-02 and 2016YFB1200506-08), and the 2015 Doctoral Innovation Funds of Southwest Jiaotong University, China
文摘This paper develops a numerical model for wheel-rail noise analysis in the time-domain. This model for wheel-rail noise is based on vehicle-track coupling dynamics considering the effect of flexible wheelsets and track, and a transient wheel-rail noise prediction method. This model can approximatively characterize the components of vibration and noise in the frequency range up to 3.5 kHz. The wheel-rail forces are calculated and shown in both time and frequency domains by using the vehicle- track coupling dynamic model. Then the vibration and sound of the flexible wheelset are calculated by the transient finite element- boundary element (FE-BE) prediction model at 300 kin/h, in which the effects of random irregularity and discrete supporting excitation are considered. The numerical results calculated by using the present model are discussed. The present model is also used to calculate the effect of corrugation with wavelengths of 40 mm to 300 mm on wheel-rail noise. The numerical results can be useful for academic research and engineering application to railway noise and vibration.