期刊导航
期刊开放获取
唐山市科学技术情报研究..
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于增量稀疏核极限学习机的发动机状态在线预测
被引量:
3
1
作者
刘敏
张英堂
+1 位作者
范红波
李志宁
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2019年第1期34-40,共7页
针对发动机状态在线预测中样本累积、预测模型膨胀和在线更新速度慢等问题,提出了基于增量稀疏核极限学习机的在线预测方法.该方法定义了KELM核函数矩阵的稀疏测量矩阵,并根据矩阵原子相干最小化和自信息量最大化的样本信息度量准则实...
针对发动机状态在线预测中样本累积、预测模型膨胀和在线更新速度慢等问题,提出了基于增量稀疏核极限学习机的在线预测方法.该方法定义了KELM核函数矩阵的稀疏测量矩阵,并根据矩阵原子相干最小化和自信息量最大化的样本信息度量准则实现在线样本前向稀疏与后向删减,提高了样本稀疏化效率.利用有效样本对测量矩阵在最佳阶数内进行在线扩充与修剪,限制了预测模型膨胀.利用改进的增量建模方法对模型的核权重矩阵进行递推更新,从而建立规模有限且结构稀疏的在线预测模型,提高了在线建模速度.仿真数据和发动机状态参数在线预测实验结果表明,与现有在线预测方法相比,ISKELM具有更高的样本稀疏化和在线建模效率.对发动机排气温度进行120步预测时,预测速度分别提高了80.50%和31.72%,预测精度分别提高了48.56%和15.81%.
展开更多
关键词
核极限学习机
稀疏测量矩阵
样本信息度量
增量建模
在线预测
在线阅读
下载PDF
职称材料
题名
基于增量稀疏核极限学习机的发动机状态在线预测
被引量:
3
1
作者
刘敏
张英堂
范红波
李志宁
机构
陆军工程大学石家庄校区
出处
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2019年第1期34-40,共7页
基金
国家自然科学基金资助项目(51305454)
文摘
针对发动机状态在线预测中样本累积、预测模型膨胀和在线更新速度慢等问题,提出了基于增量稀疏核极限学习机的在线预测方法.该方法定义了KELM核函数矩阵的稀疏测量矩阵,并根据矩阵原子相干最小化和自信息量最大化的样本信息度量准则实现在线样本前向稀疏与后向删减,提高了样本稀疏化效率.利用有效样本对测量矩阵在最佳阶数内进行在线扩充与修剪,限制了预测模型膨胀.利用改进的增量建模方法对模型的核权重矩阵进行递推更新,从而建立规模有限且结构稀疏的在线预测模型,提高了在线建模速度.仿真数据和发动机状态参数在线预测实验结果表明,与现有在线预测方法相比,ISKELM具有更高的样本稀疏化和在线建模效率.对发动机排气温度进行120步预测时,预测速度分别提高了80.50%和31.72%,预测精度分别提高了48.56%和15.81%.
关键词
核极限学习机
稀疏测量矩阵
样本信息度量
增量建模
在线预测
Keywords
kernel extreme learning machine(KELM)
sparse measurement matrix
sample information measurement
incremental modeling
online prediction
分类号
TP183 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于增量稀疏核极限学习机的发动机状态在线预测
刘敏
张英堂
范红波
李志宁
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2019
3
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部