期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
核递归最小平均P范数算法 被引量:1
1
作者 赵知劲 张笑菲 《信号处理》 CSCD 北大核心 2017年第4期523-527,共5页
在强脉冲噪声干扰背景中,核递归最小二乘(Kernel Recursive Least Square,KRLS)算法和核递归最大相关熵(Kernel Recursive Maximum Correntropy,KRMC)算法对非线性信号预测性能严重退化,对此提出一种核递归最小平均P范数(Kernel Recursi... 在强脉冲噪声干扰背景中,核递归最小二乘(Kernel Recursive Least Square,KRLS)算法和核递归最大相关熵(Kernel Recursive Maximum Correntropy,KRMC)算法对非线性信号预测性能严重退化,对此提出一种核递归最小平均P范数(Kernel Recursive Least Mean P-norm,KRLMP)算法。首先运用核方法将输入数据映射到再生核希尔伯特空间(Reproducing Kernnel Hilbert Space,RKHS)。其次基于最小P范数准则和正则化方法,推导得到自适应滤波器的最佳权向量,其降低了非高斯脉冲和样本量少的影响。然后利用矩阵求逆理论,推导得到矩阵的递归公式。最后利用核技巧得到在输入空间高效计算的滤波器输出和算法的迭代公式。α稳定分布噪声背景下Mackey-Glass时间序列预测的仿真结果表明:KRLMP算法与KRLS算法和KRMC算法相比,抗脉冲噪声能力强,鲁棒性好。 展开更多
关键词 Α稳定分布噪声 归最小平均P范数 核递归最小二乘算法 递归最大相关熵算法
在线阅读 下载PDF
基于核自适应滤波器的时间序列在线预测研究综述 被引量:11
2
作者 韩敏 马俊珠 +1 位作者 任伟杰 钟凯 《自动化学报》 EI CAS CSCD 北大核心 2021年第4期730-746,共17页
核自适应滤波器(Kernel adaptive filter,KAF)是时间序列在线预测的重点研究领域之一,本文对核自适应滤波器的最新进展及未来研究方向进行了分析和总结.基于核自适应滤波器的时间序列在线预测方法,能较好地解决预测、跟踪问题.本文首先... 核自适应滤波器(Kernel adaptive filter,KAF)是时间序列在线预测的重点研究领域之一,本文对核自适应滤波器的最新进展及未来研究方向进行了分析和总结.基于核自适应滤波器的时间序列在线预测方法,能较好地解决预测、跟踪问题.本文首先概述了三类核自适应滤波器的基本模型,包括核最小均方算法、核递归最小二乘算法和核仿射投影算法(Kernel affine projection algorithm,KAPA).在此基础上,从核自适应滤波器在线预测的内容和机理入手,综述基于核自适应滤波器的时间序列在线预测方法.最后,本文将介绍这一领域潜在的研究方向和发展趋势,并展望未来的挑战. 展开更多
关键词 自适应滤波器 时间序列在线预测 最小均方 核递归最小二乘 仿射投影算法
在线阅读 下载PDF
基于支持向量机的大样本回归算法比较研究 被引量:3
3
作者 杨晓伟 骆世广 +2 位作者 余舒 吴春国 梁艳春 《计算机工程与应用》 CSCD 北大核心 2006年第6期36-38,57,共4页
支持向量机的研究是当前人工智能领域的研究热点。基于支持向量机的大样本回归问题一直是一个非常具有挑战性的课题。最近,基于递归最小二乘算法,Engel等人提出了核递归最小二乘算法。文中基于块增量学习和逆学习过程,提出了自适应迭代... 支持向量机的研究是当前人工智能领域的研究热点。基于支持向量机的大样本回归问题一直是一个非常具有挑战性的课题。最近,基于递归最小二乘算法,Engel等人提出了核递归最小二乘算法。文中基于块增量学习和逆学习过程,提出了自适应迭代回归算法。为了说明两种方法的性能,论文在训练速度、精度和支持向量数量等方面,对它们做了比较。模拟结果表明:核递归最小二乘算法所得到的支持向量个数比自适应迭代回归算法少,而训练时间比自适应迭代回归算法的训练时间长,训练和测试精度也比自适应迭代回归算法差。 展开更多
关键词 支持向量机 自适应迭代回归算法 核递归最小二乘算法 大样本回归
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部