期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于极端梯度提升法的某光伏电站发电量预测
1
作者 吴江江 兰智 《电器工业》 2025年第1期6-10,38,共6页
为解决复杂气象因素下光伏电站发电量预测结果不理想及波动较大的问题,针对陕西洛南某光伏厂区发电情况,基于XGBoost模型建立光伏电站发电量预测模型并对其进行相关评价及验证。研究结果表明,XGBoost模型在光伏电站发电量预测方面存在... 为解决复杂气象因素下光伏电站发电量预测结果不理想及波动较大的问题,针对陕西洛南某光伏厂区发电情况,基于XGBoost模型建立光伏电站发电量预测模型并对其进行相关评价及验证。研究结果表明,XGBoost模型在光伏电站发电量预测方面存在较好的精度与可靠性,相较于其他预测模型(支持向量机模型、决策树模型、随机森林模型、BP神经网络模型),XGBoost模型预测值与实际测定值的相对误差最小,相对误差可以控制在6%以内,决定系数最高,证实了XGBoost模型在光伏电站发电量预测方面存在较好的精度与可靠性。本研究可为此类光伏电站厂区的发电量预测及管理运行提供参考。 展开更多
关键词 光伏电站 机器学习模型 发电量预测 气象因素 极端梯度提升法
在线阅读 下载PDF
梯度提升法在信贷风险评估中的应用研究
2
作者 张哲滔 《自动化应用》 2024年第13期26-31,共6页
开发了一种先进的机器学习模型,以通过预测贷款违约的可能性估计信贷风险。该模型利用不同的数据集,通过梯度提升方法评估年收入、信用记录和年龄等众多申请人因素,能提供稳健、稳定的预测结果,并能适应不断变化的消费者行为,大大提高... 开发了一种先进的机器学习模型,以通过预测贷款违约的可能性估计信贷风险。该模型利用不同的数据集,通过梯度提升方法评估年收入、信用记录和年龄等众多申请人因素,能提供稳健、稳定的预测结果,并能适应不断变化的消费者行为,大大提高了金融机构在贷款过程中作出明智决策的能力,最大限度地降低了金融风险,从而优化了风险管理策略。 展开更多
关键词 梯度提升法 信贷风险评估 贷款违约预测 机器学习 风险管理
在线阅读 下载PDF
基于GBDT算法的装备制造产业技术创新力研究
3
作者 乐思诗 叶斌 《科技创新与生产力》 2023年第3期102-104,共3页
本文将机器学习方法应用于装备制造业技术创新分析,基于GBDT算法分析制约其技术创新的因素,通过城市、行业两个变量得出R&D人员投入、R&D经费内部支出和技术改造经费支出是制约各个城市装备制造业发展的因素。汽车制造业比其他... 本文将机器学习方法应用于装备制造业技术创新分析,基于GBDT算法分析制约其技术创新的因素,通过城市、行业两个变量得出R&D人员投入、R&D经费内部支出和技术改造经费支出是制约各个城市装备制造业发展的因素。汽车制造业比其他细分行业对装备制造业技术创新影响更大。受制于消化吸收能力,技术改造的影响在投入前期并不稳定。 展开更多
关键词 装备制造业 技术创新 机器学习 梯度提升法
在线阅读 下载PDF
Feasibility of stochastic gradient boosting approach for predicting rockburst damage in burst-prone mines 被引量:4
4
作者 周健 史秀志 +2 位作者 黄仁东 邱贤阳 陈冲 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第7期1938-1945,共8页
The database of 254 rockburst events was examined for rockburst damage classification using stochastic gradient boosting (SGB) methods. Five potentially relevant indicators including the stress condition factor, the... The database of 254 rockburst events was examined for rockburst damage classification using stochastic gradient boosting (SGB) methods. Five potentially relevant indicators including the stress condition factor, the ground support system capacity, the excavation span, the geological structure and the peak particle velocity of rockburst sites were analyzed. The performance of the model was evaluated using a 10 folds cross-validation (CV) procedure with 80%of original data during modeling, and an external testing set (20%) was employed to validate the prediction performance of the SGB model. Two accuracy measures for multi-class problems were employed: classification accuracy rate and Cohen’s Kappa. The accuracy analysis together with Kappa for the rockburst damage dataset reveals that the SGB model for the prediction of rockburst damage is acceptable. 展开更多
关键词 burst-prone mine rockburst damage stochastic gradient boosting method
在线阅读 下载PDF
Machine learning-based prediction of soil compression modulus with application of ID settlement 被引量:14
5
作者 Dong-ming ZHANG Jin-zhang ZHANG +2 位作者 Hong-wei HUANG Chong-chong QI Chen-yu CHANG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2020年第6期430-444,共15页
The compression modulus(Es)is one of the most significant soil parameters that affects the compressive deformation of geotechnical systems,such as foundations.However,it is difficult and sometime costly to obtain this... The compression modulus(Es)is one of the most significant soil parameters that affects the compressive deformation of geotechnical systems,such as foundations.However,it is difficult and sometime costly to obtain this parameter in engineering practice.In this study,we aimed to develop a non-parametric ensemble artificial intelligence(AI)approach to calculate the Es of soft clay in contrast to the traditional regression models proposed in previous studies.A gradient boosted regression tree(GBRT)algorithm was used to discern the non-linear pattern between input variables and the target response,while a genetic algorithm(GA)was adopted for tuning the GBRT model's hyper-parameters.The model was tested through 10-fold cross validation.A dataset of 221 samples from 65 engineering survey reports from Shanghai infrastructure projects was constructed to evaluate the accuracy of the new model5 s predictions.The mean squared error and correlation coefficient of the optimum GBRT model applied to the testing set were 0.13 and 0.91,respectively,indicating that the proposed machine learning(ML)model has great potential to improve the prediction of Es for soft clay.A comparison of the performance of empirical formulas and the proposed ML method for predicting foundation settlement indicated the rationality of the proposed ML model and its applicability to the compressive deformation of geotechnical systems.This model,however,cannot be directly applied to the prediction of Es in other sites due to its site specificity.This problem can be solved by retraining the model using local data.This study provides a useful reference for future multi-parameter prediction of soil behavior. 展开更多
关键词 Compression modulus prediction Machine learning(ML) Gradient boosted regression tree(GBRT) Genetic algorithm(GA) Foundation settlement
原文传递
Revolutionizing engineered cementitious composite materials(ECC):the impact of XGBoost-SHAP analysis on polyvinyl alcohol(PVA)based ECC predictions
6
作者 Md Nasir Uddin Al-Amin Shameem Hossain 《Low-carbon Materials and Green Construction》 2024年第1期311-333,共23页
This study integrates previous experimental data and employs machine learning(ML)methods,including Random Forest(RF),Support Vector Machine(SVM),Artificial Neural Network(ANN),and eXtreme Gradient Boosting(XGBoost),to... This study integrates previous experimental data and employs machine learning(ML)methods,including Random Forest(RF),Support Vector Machine(SVM),Artificial Neural Network(ANN),and eXtreme Gradient Boosting(XGBoost),to predict the compressive strength(CS)and tensile strength(TS)of engineered cementitious composites(ECC).XGBoost emerged as the superior model among the four ML models,providing an interpretable and highly accurate predictive framework.To optimize the model performance,hyperparameter tuning using a fivefold cross-validation approach with the data divided into 80%training and 20%testing subsets.The Shapley Additive Explanations(SHAP)algorithm was also employed to reveal the impact of important features,such as the water/binder ratio,fly ash content,and water reducer dosage,on the model’s predictions and their interrelationships.The XGBoost demonstrates the most exemplary performance,as reflected in the R^(2)values of 0.92 and 0.97 for CS and TS testing,respectively.The SHAP analysis provided insights into the impact of individual features on CS and TS,shedding light on how specific characteristics influence the predictive accuracy of these properties.This highly accurate prediction model uncovers insights into correlated features,aids in creating new mix designs of ECC,and supports global efforts toward a low-carbon future in the construction industry by reducing carbon emissions. 展开更多
关键词 Engineered Cementitious Composite PVA-fiber Random Forest Artificial Neural Network Support Vector Machine Extreme Gradient Boosting(XGBoost) Shapley Additive Explanations
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部