期刊文献+
共找到60篇文章
< 1 2 3 >
每页显示 20 50 100
面向类不均衡数据的多任务博弈概率分类向量机
1
作者 潘海洋 李丙新 +1 位作者 郑近德 童靳于 《机电工程》 CAS 北大核心 2024年第3期430-437,共8页
在工程实际中获取的故障样本往往会呈现不均衡特点,同时传统的分类模型也会存在局限性。针对这些问题,基于稀疏贝叶斯理论、模糊隶属度等理论,提出了一种多任务博弈概率分类向量机(MGPCVM)分类方法。首先,在MGPCVM的目标函数中,设计了... 在工程实际中获取的故障样本往往会呈现不均衡特点,同时传统的分类模型也会存在局限性。针对这些问题,基于稀疏贝叶斯理论、模糊隶属度等理论,提出了一种多任务博弈概率分类向量机(MGPCVM)分类方法。首先,在MGPCVM的目标函数中,设计了博弈因子,将不同类样本质心间的博弈信息赋予每个样本特定的样本质心敏感值,以解决传统分类器对不平衡数据集分类表现较差的问题;然后,在贝叶斯框架理论下,采用截断高斯先验分布的方法,使样本参数的正负与对应的标签信息相一致,且使样本质心敏感值产生了稀疏估计;最后,将MGPCVM方法应用于两种不同实验平台采集的滚动轴承实验数据处理,进行了故障诊断有效性验证。研究结果表明:在不同的不平衡比(IR)下,MGPCVM方法的准确率均保持在95%以上,相对于支持向量机(SVM)、概率分类向量机(PCVM)等方法提升了4%~8%;与典型向量式分类方法相比,MGPCVM方法可以在不平衡数据条件下表现出优越的分类性能,适用于实际工况中数据失衡的分类问题。 展开更多
关键词 滚动轴承 故障诊断 多任务博弈概率分类向量机 支持向量机 概率分类向量机 不均衡比 故障分类模型
在线阅读 下载PDF
电能质量扰动的专家概率分类器模型 被引量:6
2
作者 王志群 朱守真 周双喜 《电力系统自动化》 EI CSCD 北大核心 2004年第8期45-49,56,共6页
电力系统以及部分用户均安装有监测装置,收集了大量的扰动数据,因此有必要研究出实用简单的、自动的扰动分类器,从而为进一步研究奠定基础。提出了电能质量扰动的专家概率分类器模型,用于常见电能质量扰动的分类。概率分类器基于数理统... 电力系统以及部分用户均安装有监测装置,收集了大量的扰动数据,因此有必要研究出实用简单的、自动的扰动分类器,从而为进一步研究奠定基础。提出了电能质量扰动的专家概率分类器模型,用于常见电能质量扰动的分类。概率分类器基于数理统计规律,概念清楚、运算简单,引入专家反馈环节可以提高分类的准确性、鲁棒性,使得分类器具备一定的自适应能力。根据同一监测地点检测到的电能质量扰动样本,构建并测试了该分类器的可行性及性能,结果令人满意。 展开更多
关键词 电能质量扰动分类 概率分类 专家反馈
在线阅读 下载PDF
基于SOM-PNN分类器的体数据概率分类及绘制 被引量:2
3
作者 马峰 夏绍玮 +1 位作者 童欣 唐泽圣 《计算机学报》 EI CSCD 北大核心 1998年第9期819-824,共6页
概率分类是三维医学体数据绘制必不可少的预处理环节.本文提出的SOM-PNN分类器,以贝叶斯置信度为基础,给出概率分类结果,并用于三维体绘制,得到了良好的图像质量和较高的分类效率.传统的参数模型方法的主要缺点是预先假定的概率... 概率分类是三维医学体数据绘制必不可少的预处理环节.本文提出的SOM-PNN分类器,以贝叶斯置信度为基础,给出概率分类结果,并用于三维体绘制,得到了良好的图像质量和较高的分类效率.传统的参数模型方法的主要缺点是预先假定的概率分布函数形式不一定符合待分类的数据.非参数模型方法,如PNN分类器,可以有效地克服参数模型的缺点,但其巨大的内存开销与低的分类速度使得用PNN作图像分类几乎不可行.SOM具有良好的自组织聚类能力,但无法直接给出概率分类结果.本文提出的SOM-PNN分类器在SOM聚类的基础上,利用PNN进行概率分类,结合了SOM自组织聚类和PNN概率分类的优势,同时克服了传统参数模型分类的局限性.实验结果证实了SOM-PNN分类器具有分类精度高、速度快及揭示细节的能力. 展开更多
关键词 SOM-PNN分类 体数据概率分类 体绘制 医学
在线阅读 下载PDF
基于多目标演化算法和改进概率分类的重尾时间序列预测 被引量:8
4
作者 邹小云 林文学 《计算机应用与软件》 北大核心 2020年第12期273-279,共7页
金融、通信和气象等领域中高频时间序列的边际分布均为重尾分布,而传统时间序列预测算法大多将数据流考虑为正态分布,导致传统算法无法适用于重尾分布的时间序列。针对这种情况,提出一种基于演化算法和改进概率分类器的重尾时间序列预... 金融、通信和气象等领域中高频时间序列的边际分布均为重尾分布,而传统时间序列预测算法大多将数据流考虑为正态分布,导致传统算法无法适用于重尾分布的时间序列。针对这种情况,提出一种基于演化算法和改进概率分类器的重尾时间序列预测算法。将预测提前量和预测准确率作为两个优化目标,利用演化算法对两个目标进行独立优化。对高斯过程分类进行改进,使其支持重尾时间序列的分类问题,并且优化了时间效率。实验结果表明,该算法有效地提高了时间序列的预测准确率。 展开更多
关键词 多目标优化 风险预测 重尾分布 时间序列分类 概率分类
在线阅读 下载PDF
高光谱影像概率分类向量机分类方法研究 被引量:1
5
作者 薛志祥 余旭初 +2 位作者 张鹏强 谭熊 魏祥坡 《测绘科学技术学报》 CSCD 北大核心 2016年第4期426-430,共5页
从分析基于支持向量机和相关向量机的高光谱影像分类方法的优势和不足出发,将基于概率分类向量机的方法用于高光谱影像分类试验。在贝叶斯理论框架下,概率分类向量机为基函数权值引入截断Gauss先验概率分布,使得不同类别的基函数权值具... 从分析基于支持向量机和相关向量机的高光谱影像分类方法的优势和不足出发,将基于概率分类向量机的方法用于高光谱影像分类试验。在贝叶斯理论框架下,概率分类向量机为基函数权值引入截断Gauss先验概率分布,使得不同类别的基函数权值具有不同符号的先验分布,并利用EM算法进行参数推断,得到足够稀疏的概率模型,弥补了相关向量机选取错误类别的样本作为相关向量的不足,从而有效地提高了模型的分类精度和稳定性。OMIS和PHI影像分类试验表明,概率分类向量机能够很好地应用在高光谱影像分类。 展开更多
关键词 高光谱影像 稀疏分类 贝叶斯模型 概率分类向量机 相关向量机
在线阅读 下载PDF
基于多钻进参数和概率分类方法的地层识别研究 被引量:20
6
作者 梁栋才 汤华 +2 位作者 吴振君 张勇慧 房昱纬 《岩土力学》 EI CAS CSCD 北大核心 2022年第4期1123-1134,共12页
传统的超前钻探地质预报常以某个钻进参数的变化率作为地层识别的主要依据。钻头破岩是一个复杂的力学过程,应考虑多个参数的协同作用,仅采用单钻进参数识别地层的不确定性较大。首先,对超前钻探数据进行预处理,包括标准化、频数分布分... 传统的超前钻探地质预报常以某个钻进参数的变化率作为地层识别的主要依据。钻头破岩是一个复杂的力学过程,应考虑多个参数的协同作用,仅采用单钻进参数识别地层的不确定性较大。首先,对超前钻探数据进行预处理,包括标准化、频数分布分析和敏感性分析,筛选出对地层变化敏感的关键钻进参数;其次,基于能量守恒、二元无序逻辑回归分析和多参数变异性分析原理分别建立了破岩能量、逻辑回归概率和地层硬度3种地层识别综合指标;最后,采用基于贝叶斯原理的概率分类方法建立地层识别模型,利用ROC分析方法得到模型参数,实现基于多钻进参数和概率分类方法的地层识别。以地质条件复杂的隧道工程为例,介绍了该地层识别方法的应用,结果表明:3种地层识别综合指标均具有较好的跨孔地层识别能力,识别准确率超过80%;破岩能量和逻辑回归概率指标适用于较近距离的跨孔地层识别,平均识别准确率分别为86.3%和84.1%;逻辑回归概率指标对软弱夹层识别能力较强,准确率达到94.2%;地层硬度指标适用于较远距离的跨孔地层识别;灰岩识别准确率最大达到93.2%。 展开更多
关键词 超前钻探 破岩能量 逻辑回归概率 地层硬度指标 概率分类 地层识别
在线阅读 下载PDF
属性掌握概率分类模型——一种基于Q矩阵的认知诊断模型 被引量:7
7
作者 朱金鑫 张淑梅 辛涛 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第2期117-122,共6页
提出了一种属性掌握概率的分类模型,该模型基于Q矩阵,采用对属性掌握概率先估计后分类的方法,从而实现对考生知识状态的识别.在估计阶段提出一种属性掌握概率的估计方法,在分类阶段引进模糊数学的贴近度按择近原则判别法,并通过计算机... 提出了一种属性掌握概率的分类模型,该模型基于Q矩阵,采用对属性掌握概率先估计后分类的方法,从而实现对考生知识状态的识别.在估计阶段提出一种属性掌握概率的估计方法,在分类阶段引进模糊数学的贴近度按择近原则判别法,并通过计算机模拟研究,发现该模型适用于总体的属性掌握概率服从左偏态分布和双峰分布的考生知识状态的识别. 展开更多
关键词 认知诊断 属性掌握概率分类模型 属性掌握概率估计 模糊识别
在线阅读 下载PDF
基于Softmax概率分类器的数据驱动空间负荷预测 被引量:24
8
作者 郑伟民 叶承晋 +3 位作者 张曼颖 王蕾 孙可 丁一 《电力系统自动化》 EI CSCD 北大核心 2019年第9期117-124,共8页
提出了一种数据驱动空间负荷预测方法。将网格化体系下的功能地块作为空间负荷预测的基本单元,并且通过多维指标体系进行属性描述。基于大量调研数据,通过数据挖掘方法对不同类型地块的空间负荷密度分布规律和负荷曲线典型形态进行提取... 提出了一种数据驱动空间负荷预测方法。将网格化体系下的功能地块作为空间负荷预测的基本单元,并且通过多维指标体系进行属性描述。基于大量调研数据,通过数据挖掘方法对不同类型地块的空间负荷密度分布规律和负荷曲线典型形态进行提取。建立Softmax多元概率分类模型对未知地块的负荷水平类型进行匹配。自下而上对相邻地块负荷预测结果进行时域叠加,得到更大区域的预测信息,包括其负荷量和预测负荷曲线。算例仿真结果表明提出的空间负荷预测方法在预测精度上有一定提升。 展开更多
关键词 空间负荷预测 数据挖掘 地块 Softmax概率分类 负荷曲线
在线阅读 下载PDF
基于多时相影像的农业作物非参数与概率分类(英文) 被引量:7
9
作者 俞军 Bo Ranneby 《遥感学报》 CSCD 北大核心 2007年第5期748-755,共8页
本文提出了一种新的结合多光谱和变化检测技术的多时相卫星数据集分类方法。该方法以数理统计中的最近邻法为基础,其目标函数是使得正确分类的平均概率得到最优化,即把每个分类类别看成同等重要。该新算法被应用于一个农业作物分类的研... 本文提出了一种新的结合多光谱和变化检测技术的多时相卫星数据集分类方法。该方法以数理统计中的最近邻法为基础,其目标函数是使得正确分类的平均概率得到最优化,即把每个分类类别看成同等重要。该新算法被应用于一个农业作物分类的研究区域,并利用覆盖该区的不同季节的SPOT和LANDSAT TM多时像影像。结果表明,与单时像影像相比,使用五个不同季节的多时像影像可以充分地提高分类精度。为了说明该方法在大尺度范围内的效果,本文选取瑞典道拉河流域作为研究区。由于不同地物的分布高度重叠,不可能得到像元水平上满意的分类精度。这就需要引进一种新的概念:像元概率分类法。基于像元的概率向量可用于判别传统分类法的可靠性并测量单个像元的不确定性(熵)。概率分类法同时提供了不同地物的面积的无偏估计,无论所感兴趣的区域的大小。这已经在不同特性的耕地试验点进行了检验。 展开更多
关键词 非参数分类 近邻方法 概率分类 农业作物 质量评价 多时相影像 遥感 流域
在线阅读 下载PDF
基于局部方差和后验概率分类的快速模板匹配算法 被引量:1
10
作者 林煜桐 朱姗姗 +3 位作者 彭凌西 彭绍湖 谢翔 林焕然 《电子技术应用》 2023年第9期97-102,共6页
具有旋转不变性的模板匹配算法在工业制造上具有广泛的应用。为解决传统的模板匹配方法在目标旋转、匹配速度上的问题,提出一种基于局部方差和后验概率分类的模板匹配方法。为减少计算量,在匹配中通过局部方差过滤掉部分候选窗口,并在... 具有旋转不变性的模板匹配算法在工业制造上具有广泛的应用。为解决传统的模板匹配方法在目标旋转、匹配速度上的问题,提出一种基于局部方差和后验概率分类的模板匹配方法。为减少计算量,在匹配中通过局部方差过滤掉部分候选窗口,并在后验概率分类模块中通过对比不同区域稳定特征点对的灰度来计算窗口相关性。使用后验概率分类计算窗口相关度能在预处理过程实现旋转不变性,并保证准确率在95%以上。实验结果表明,该算法在80万像素级的任意角度匹配图像上选择合适的窗口移动步长后,可将匹配时间减少到10 ms以内,相较于现有算法速度更快。 展开更多
关键词 机器视觉 模板匹配 局部方差 稳定特征点 后验概率分类
在线阅读 下载PDF
利用概率分类向量机的高光谱影像非线性解混
11
作者 薛志祥 余旭初 +1 位作者 谭熊 秦进春 《测绘科学与工程》 2017年第1期45-50,共6页
为提高高光谱影像的解混精度,针对线性解混模型无法揭示混合像元中的非线性特性以及当前非线性解混方法解混精度低的问题,提出一种利用概率分类向量机后验概率进行高光谱影像非线性混合像元分解的方法。在贝叶斯理论框架下,概率分类... 为提高高光谱影像的解混精度,针对线性解混模型无法揭示混合像元中的非线性特性以及当前非线性解混方法解混精度低的问题,提出一种利用概率分类向量机后验概率进行高光谱影像非线性混合像元分解的方法。在贝叶斯理论框架下,概率分类向量机为基函数权值引入截断Gauss先验概率分布,弥补了相关向量机选取错误类别的样本作为相关向量的不足;模型预测值具有明确的概率统计意义,类别后验概率不需要通过带参数的Sigmoid函数近似,有效地提高了模型的解混精度和稳定性。实验结果表明,与基于支持向量机、相关向量机和线性解混模型相比,所提模型有效地提高了光谱解混精度。 展开更多
关键词 高光谱影像 核稀疏表示 概率分类向量机 相关向量机 非线性解混
在线阅读 下载PDF
基于概率分类器加权的多模态AD分类模型研究
12
作者 陈国斌 曾安 《计算机科学与应用》 2021年第3期760-769,共10页
阿尔茨海默症(Alzheimer’s Disease, AD)是一种最常见的神经退行性疾病,其症状具体表现为记忆和思维能力的退化,同时AD是受遗传因素影响很大的疾病,目前对AD仍无有效的治疗手段,许多研究基于单一模态数据进行早期诊断的研究效果不理想... 阿尔茨海默症(Alzheimer’s Disease, AD)是一种最常见的神经退行性疾病,其症状具体表现为记忆和思维能力的退化,同时AD是受遗传因素影响很大的疾病,目前对AD仍无有效的治疗手段,许多研究基于单一模态数据进行早期诊断的研究效果不理想。为此,研究基于磁共振影像(MRI)和单核苷酸多态性(Single Nucleotide Polymorphim, SNP)两种模态数据提出一种概率分类器加权的多模态集成学习新框架,为分类器提供更丰富、全面的信息,从而提高AD诊断分类的准确率和稳定性。研究方法在AD vs NC、MCIc vs NC和MCInc vs MCIc的5次5折交叉验证实验结果平均准确率分别高达80%、76%、70%,结果表明研究提出的多模态集成学习模型与利用单一模态数据的分类模型相比更具有优势。 展开更多
关键词 阿尔茨海默症 多模态 磁共振影像 单核苷酸多态性 概率分类器加权
在线阅读 下载PDF
因素空间理论下的因果概率推理分类算法研究
13
作者 曾繁慧 胡光闪 +1 位作者 孙慧 汪培庄 《智能系统学报》 CSCD 北大核心 2024年第4期1042-1051,共10页
机器学习方法与因果推理结合能极大地提升方法性能。为探究因果概率正逆向推理的分类效果,基于因素空间理论下的因素概率论,利用条件概率,研究正向因素概率推理原理及模型并提出正向因果概率推理分类法(forward causal probabilistic in... 机器学习方法与因果推理结合能极大地提升方法性能。为探究因果概率正逆向推理的分类效果,基于因素空间理论下的因素概率论,利用条件概率,研究正向因素概率推理原理及模型并提出正向因果概率推理分类法(forward causal probabilistic inference classification algorithm,FCPIC)和简化条件的可取度分类法;研究逆向因素概率推理原理及模型并结合贝叶斯网络提出逆向因果概率推理分类法(reverse causal probabilistic inference classification algorithm,RCPIC)。将3个分类算法与KNN(K-Nearest neighbor)和SVM(support vector machine)算法进行实例对比验证,研究结果表明:FCPIC算法、可取度分类算法和RCPIC算法简单有效、具有可行性和实用性,且可取度分类法和RCPIC算法性能优于SVM和KNN算法,FCPIC算法对实际数据预测中必要类有查全需求的情况更优。研究结论丰富了因素空间的理论研究和应用价值。 展开更多
关键词 因素空间 因果概率推理分类 可取度分类 贝叶斯网络 因素概率 条件概率 因果关系 人工智能
在线阅读 下载PDF
基于中尺度数值模式快速循环系统的强对流天气分类概率预报试验 被引量:57
14
作者 雷蕾 孙继松 +1 位作者 王国荣 郭锐 《气象学报》 CAS CSCD 北大核心 2012年第4期752-765,共14页
在利用实况探空资料、微波辐射计和风廓线构建的特种探空资料对北京地区强对流天气进行判别,以及快速更新循环同化预报系统(BJ-RUC模式)探空资料可应用性分析的基础上,针对模式探空基本要素计算多种热力、动力、综合不稳定物理量,根据... 在利用实况探空资料、微波辐射计和风廓线构建的特种探空资料对北京地区强对流天气进行判别,以及快速更新循环同化预报系统(BJ-RUC模式)探空资料可应用性分析的基础上,针对模式探空基本要素计算多种热力、动力、综合不稳定物理量,根据统计的强对流天气判别指标,计算模式格点上的强对流发生概率,并进一步针对冰雹(雷暴大风)和强对流短时暴雨天气下不同物理量的阈值范围,初步探索中尺度数值模式对强对流天气分类预报的可能性。通过不同组合的预报方案进行的对比分析表明,利用北京地区中尺度数值模式快速循环系统(BJ-RUC)的格点探空资料进行强对流天气概率的预报是可以实现的,强对流天气的分类概率预报也存在一定的成功率。 展开更多
关键词 实况探空 BJ—RUC 模式探空 强对流 分类概率预报
在线阅读 下载PDF
一种基于多分类概率输出的变压器故障诊断方法 被引量:23
15
作者 毕建权 鹿鸣明 +2 位作者 郭创新 王逸飞 刘潇洋 《电力系统自动化》 EI CSCD 北大核心 2015年第5期88-93,100,共7页
多分类概率输出方法可用于变压器故障诊断,其分类效果较好并能提供概率信息。针对现有基于支持向量机(SVM)的诊断方法在特征不明显条件下有误分类的情况,提出了一种基于多分类概率输出的变压器故障诊断方法。此方法引入Sigmoid函数将SV... 多分类概率输出方法可用于变压器故障诊断,其分类效果较好并能提供概率信息。针对现有基于支持向量机(SVM)的诊断方法在特征不明显条件下有误分类的情况,提出了一种基于多分类概率输出的变压器故障诊断方法。此方法引入Sigmoid函数将SVM决策函数输出映射为二分类概率输出,然后综合多个二分类概率输出结果,求解一个凸二次规划问题实现多分类概率输出。此方法可以得到发生不同类型故障的可能性,即故障类别概率,进一步分析后给出诊断结论。算例分析表明,此方法在继承了SVM故障诊断方法优点的基础上,提供了概率信息,对现有SVM方法误诊断样本也能给出可能存在的故障,弥补了现有SVM方法在变压器故障特征不明显条件下的不足。 展开更多
关键词 变压器故障诊断 支持向量机 油中溶解气体分析 分类概率输出
在线阅读 下载PDF
分类概率保持鉴别分析及其在人脸识别中的应用 被引量:2
16
作者 杨章静 刘传才 +1 位作者 黄璞 朱俊 《模式识别与人工智能》 EI CSCD 北大核心 2014年第1期77-81,共5页
针对特征提取算法中存在的问题,在线性鉴别分析的基础上提出分类概率保持鉴别分析(CPPDA)并成功应用于人脸识别.CPPDA首先计算每个样本的分类概率,并利用分类概率重新定义样本的类间散布矩阵和类内散布矩阵;然后通过最大化类间散度同时... 针对特征提取算法中存在的问题,在线性鉴别分析的基础上提出分类概率保持鉴别分析(CPPDA)并成功应用于人脸识别.CPPDA首先计算每个样本的分类概率,并利用分类概率重新定义样本的类间散布矩阵和类内散布矩阵;然后通过最大化类间散度同时最小化类内散度寻求最佳投影矩阵,使得样本的原始分布信息在低维特征空间能得到保持.在ORL、Yale及FERET人脸库上进行测试比较,结果表明文中所提方法的优越性. 展开更多
关键词 人脸识别 特征提取 流形 分类概率 鉴别分析
在线阅读 下载PDF
基于RVM的多类分类概率输出方法 被引量:4
17
作者 李睿 王晓丹 《计算机科学》 CSCD 北大核心 2017年第3期242-246,共5页
基于相关向量机(Relevance Vector Machine,RVM)可以输出各类别成员概率的特点,对RVM二分类模型分别采用多元sigmoid方法和pairwise coupling方法,将其扩展为一对多分类器和一对一分类器,实现了多类分类及概率输出。基于人工高斯数据集... 基于相关向量机(Relevance Vector Machine,RVM)可以输出各类别成员概率的特点,对RVM二分类模型分别采用多元sigmoid方法和pairwise coupling方法,将其扩展为一对多分类器和一对一分类器,实现了多类分类及概率输出。基于人工高斯数据集和UCI数据集的实验仿真结果表明,所提方法不仅能够准确地求解样本后验概率,而且运行效率也比较高,同时能够保证较高的分类正确率。 展开更多
关键词 相关向量机 多类分类概率 成对分解
在线阅读 下载PDF
基于分类概率加权的朴素贝叶斯分类方法 被引量:15
18
作者 张步良 《重庆理工大学学报(自然科学)》 CAS 2012年第7期81-83,共3页
提出一种基于概率的加权朴素贝叶斯分类算法。通过对每个属性做朴素贝叶斯分类,得到该属性分类正确的概率,把该概率作为相应的权重,分别加在条件属性上,得到加权后的朴素贝叶斯分类器。以weka自带的数据集和uci数据集进行分类测试,得到... 提出一种基于概率的加权朴素贝叶斯分类算法。通过对每个属性做朴素贝叶斯分类,得到该属性分类正确的概率,把该概率作为相应的权重,分别加在条件属性上,得到加权后的朴素贝叶斯分类器。以weka自带的数据集和uci数据集进行分类测试,得到了较好的结果。 展开更多
关键词 加权朴素贝叶斯 分类概率 条件属性
在线阅读 下载PDF
支持向量机与分类后验概率空间变化向量分析法相结合的冬小麦种植面积测量方法 被引量:11
19
作者 李苓苓 潘耀忠 +2 位作者 张锦水 宋国宝 侯东 《农业工程学报》 EI CAS CSCD 北大核心 2010年第9期210-217,共8页
利用遥感手段提取农作物种植面积时,需要结合作物物候特征,以提高面积的提取精度。该文以北京市通州区西南部为试验区,以冬小麦为研究对象,利用多时相的环境减灾小卫星遥感影像数据,通过基于支持向量机二分法的分类后验概率空间变化向... 利用遥感手段提取农作物种植面积时,需要结合作物物候特征,以提高面积的提取精度。该文以北京市通州区西南部为试验区,以冬小麦为研究对象,利用多时相的环境减灾小卫星遥感影像数据,通过基于支持向量机二分法的分类后验概率空间变化向量分析法进行冬小麦种植面积遥感测量试验研究。研究结果表明:该文提出的方法测量结果总体精度、Kappa系数分别为95%、0.90,远高于支持向量机(SVM)分类后直接比较方法(总体精度91%,Kappa系数0.79);解决了实际应用中的变化阈值选取的主观性问题,该方法的频度直方图两极化现象使得变化阈值取值部分频度被压低摊平,阈值敏感度降低,变化阈值取值更为客观,一定程度上解决了阈值难以设定的问题;SVM二分法和变化向量分析的结合增强了对光谱的敏感性,能够监测不同季相上植被的长势变化,进而提高了农作物种植面积遥感测量的精度,同时对其他农作物种植面积测量提供了途径。 展开更多
关键词 支持向量机(SVM) 作物 遥感 混合法 二分法 分类后验概率空间变化向量分析法(PCVA) 冬小麦
在线阅读 下载PDF
基于分类概率保持的最大间距准则人脸识别方法
20
作者 程国 《河南科学》 2016年第8期1220-1225,共6页
针对最大间距准则方法在特征提取中没有考虑原始样本的分布而执行硬分类标准的问题,提出了一种基于分类概率保持的最大间距准则人脸识别方法.首先,计算每个样本的分类概率,并且利用分类概率重新定义了样本的类内和类间散度矩阵;然后利... 针对最大间距准则方法在特征提取中没有考虑原始样本的分布而执行硬分类标准的问题,提出了一种基于分类概率保持的最大间距准则人脸识别方法.首先,计算每个样本的分类概率,并且利用分类概率重新定义了样本的类内和类间散度矩阵;然后利用最大间距准则得到最优投影矩阵;最后将原始样本投影到低维特征空间,保持样本分布信息.在ORL、Yale及FERET人脸数据库上的实验表明,该方法在提高人脸识别率上是有效的. 展开更多
关键词 分类概率保持 最大间距准则 人脸识别
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部