期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
PAC最优的RMAX-KNN探索算法 被引量:2
1
作者 李超 门昌骞 王文剑 《计算机科学与探索》 CSCD 北大核心 2020年第3期513-526,共14页
探索与利用的均衡是强化学习研究的重点之一。探索帮助智能体进一步了解环境来做出更优决策;而利用帮助智能体根据其自身当前对于环境的认知来做出当前最优决策。目前大多数探索算法只与值函数相关联,不考虑当前智能体对于环境的认知程... 探索与利用的均衡是强化学习研究的重点之一。探索帮助智能体进一步了解环境来做出更优决策;而利用帮助智能体根据其自身当前对于环境的认知来做出当前最优决策。目前大多数探索算法只与值函数相关联,不考虑当前智能体对于环境的认知程度,探索效率极低。针对此问题,提出了一种基于状态空间自适应离散化的RMAX-KNN强化学习算法,算法根据当前智能体对于环境状态空间的离散化程度改写值函数形式,然后基于此值函数对环境进行合理的探索,逐步实现对于环境状态空间的自适应离散化划分。RMAXKNN算法通过将探索与环境状态空间离散化相结合,逐渐加深智能体对于环境的认知程度,进而提高探索效率,同时在理论上证明该算法是一种概率近似正确(PAC)最优探索算法。在Benchmark环境上的仿真实验结果表明,RMAX-KNN算法可以在探索环境的同时实现对于环境状态空间的自适应离散化,并学习到最优策略。 展开更多
关键词 探索与利用的均衡 值函数 状态空间自适应离散化 概率近似正确(pac)最优探索算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部