A novel modular self-reconfigurable robot called UBot is presented.This robot consists of severalstandard modules.The module is cubic structure based on double rotational DOF,and has four connect-ing surfaces that can...A novel modular self-reconfigurable robot called UBot is presented.This robot consists of severalstandard modules.The module is cubic structure based on double rotational DOF,and has four connect-ing surfaces that can connect to adjacent modules.A hook-type mechanism is designed,which can quick-ly and reliably connect to or disconnect from adjacent module.This mechanism is self-locking after con-nected,and energy-saving.To achieve small overall size and mass,compact mechanical structures andelectrical systems are adopted in modular design.The modules have embedded power supply and adoptwireless communication,which can avoid cable-winding and improve flexibility of locomotion and self-re-configuration.A group of UBot modules can adapt their configuration and function to the changing envi-ronment without external help by changing their connections and positions .The basic motion and self-re-configuration are proposed,and the experiments of worm-like locomotion are implemented.展开更多
Nowadays the flexible configuration of manufacturing cells becomes to an important requirement especially at small and medium sized companies. This method can make the production fast and effective at small series or ...Nowadays the flexible configuration of manufacturing cells becomes to an important requirement especially at small and medium sized companies. This method can make the production fast and effective at small series or frequent manufacturing changes. The shop-floor control method, presented in this paper, offers a solution for the facing problem of fast and easy reconfiguration. The hardware of the controller designed modular with software components for online configuration. This solution allows sensor integration on different levels for every part of the manufacturing cell. With unified programming language and the machine specific controllers (post-processing) the cells can be defined easily by different types of human-machine interaction. The shop-floor control architecture is implemented and validated on an Adept SCARA (selective compliance assembly robot arm) robot. The robot is driven by standalone, low-level, interchangeable, software and hardware components.展开更多
基金Supported by the National High Technology Research and Development Programme of China(2006AA04Z220); the National Natural Science Foundation of China(60705027);Partially Supported by Progranl for Changjiang SchoLars and Innovative Research Team in University(PCSIRT)(IRT0423).
文摘A novel modular self-reconfigurable robot called UBot is presented.This robot consists of severalstandard modules.The module is cubic structure based on double rotational DOF,and has four connect-ing surfaces that can connect to adjacent modules.A hook-type mechanism is designed,which can quick-ly and reliably connect to or disconnect from adjacent module.This mechanism is self-locking after con-nected,and energy-saving.To achieve small overall size and mass,compact mechanical structures andelectrical systems are adopted in modular design.The modules have embedded power supply and adoptwireless communication,which can avoid cable-winding and improve flexibility of locomotion and self-re-configuration.A group of UBot modules can adapt their configuration and function to the changing envi-ronment without external help by changing their connections and positions .The basic motion and self-re-configuration are proposed,and the experiments of worm-like locomotion are implemented.
文摘Nowadays the flexible configuration of manufacturing cells becomes to an important requirement especially at small and medium sized companies. This method can make the production fast and effective at small series or frequent manufacturing changes. The shop-floor control method, presented in this paper, offers a solution for the facing problem of fast and easy reconfiguration. The hardware of the controller designed modular with software components for online configuration. This solution allows sensor integration on different levels for every part of the manufacturing cell. With unified programming language and the machine specific controllers (post-processing) the cells can be defined easily by different types of human-machine interaction. The shop-floor control architecture is implemented and validated on an Adept SCARA (selective compliance assembly robot arm) robot. The robot is driven by standalone, low-level, interchangeable, software and hardware components.