期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于统计和自适应ParNet的产学研绩效评价 被引量:1
1
作者 张睿 宋思琪 +2 位作者 胡静 张永梅 柴艳峰 《计算机应用》 CSCD 北大核心 2024年第2期628-637,共10页
针对现有产学研绩效评价体系及方法中存在的评价指标覆盖范围单一、评价样本特征表达不充分、评价模型自优化能力待提高的问题,提出主客观产学研综合绩效智能评价的评价体系及方法。首先,围绕三方合作主体,挖掘产学研合作过程中影响绩... 针对现有产学研绩效评价体系及方法中存在的评价指标覆盖范围单一、评价样本特征表达不充分、评价模型自优化能力待提高的问题,提出主客观产学研综合绩效智能评价的评价体系及方法。首先,围绕三方合作主体,挖掘产学研合作过程中影响绩效的要素及这些要素之间的联系,自主构建主客观产学研绩效三级评价体系;其次,通过将收集到的离散序列评价样本映射至极坐标空间、马尔可夫转移矩阵等不同高维空间域,增强离散样本特征表征;然后,通过基于精英反向翻筋斗觅食的混沌优化策略设计,提高深度模型冗余压缩和超参数的全局寻优效率,构建轻量压缩及高维超参数的自适应寻优的ParNet(AParNet)分类模型;最后,将模型应用于产学研绩效评价中,实现高性能的绩效智能评价。实验结果表明,所提方法很好地贴合了离散序列非线性分类应用,同时模型中加入优化策略后,在减少计算量的同时提高了分类性能,具体体现在:与ParNet相比,AParNet中的参数量减少了10.8%,较好地实现了模型的压缩,且它在产学研绩效评价中的分类准确率可达到98.6%。在产学研绩效智能评价应用中,该方法提高了评价模型的自适应能力,能够实现准确、高效的产学研绩效评价。 展开更多
关键词 产学研合作绩效评价 模糊统计 多空间域映射 卷积神经网络 模型自优化策略
在线阅读 下载PDF
An enhanced hybrid and adaptive meta-model based global optimization algorithm for engineering optimization problems 被引量:4
2
作者 ZHOU Guan DUAN LiBin +3 位作者 ZHAO WanZhong WANG ChunYan MA ZhengDong GU JiChao 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第8期1147-1155,共9页
Due to the good balance between high efficiency and accuracy, meta-model based optimization algorithm is an important global optimization category and has been widely applied. To better solve the highly nonlinear and ... Due to the good balance between high efficiency and accuracy, meta-model based optimization algorithm is an important global optimization category and has been widely applied. To better solve the highly nonlinear and computation intensive en- gineering optimization problems, an enhanced hybrid and adaptive meta-model based global optimization (E-HAM) is first proposed in this work. Important region update method (IRU) and different sampling size strategies are proposed in the opti- mization method to enhance the performance. By applying self-moving and scaling strategy, the important region will be up- dated adaptively according to the search results to improve the resulting precision and convergence rate. Rough sampling strategy and intensive sampling strategy are applied at different stages of the optimization to improve the search efficiently and avoid results prematurely gathering in a small design space. The effectiveness of the new optimization algorithm is verified by comparing to six optimization methods with different variables bench mark optimization problems. The E-HAM optimization method is then applied to optimize the design parameters of the practical negative Poisson's ratio (NPR) crash box in this work. The results indicate that the proposed E-HAM has high accuracy and efficiency in optimizing the computation intensive prob- lems and can be widely used in engineering industry. 展开更多
关键词 global optimization META-MODELING important region update method crash box
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部