On the basis of analyzing the importance of cryospheric researches in China and current status of cryospheric sciences in the world, this paper addresses key issues and main contents of present cryospheric sciences in...On the basis of analyzing the importance of cryospheric researches in China and current status of cryospheric sciences in the world, this paper addresses key issues and main contents of present cryospheric sciences in China. The key issues currently addressed are: i) mechanisms of different types of glaciers in response to climate change and the scale-conversion in water resources assessments; ii) modeling of water and heat exchanges between frozen soil and vegetation; iii) parameterization of physical processes in cryosphere as well as coupling with climate models. To gain full clarification of these key issues, works of the following three aspects should be highlighted, i.e., cryospheric processes and responses to climate change, influences of cryospheric changes, and adaptation strategies for cryospheric changes.展开更多
Enhancing the ability of the WRF model in simulating a large area covering the West Pacific Ocean, China's Mainland, and the East Indian Ocean is very important to improve prediction of the East Asian monsoon clim...Enhancing the ability of the WRF model in simulating a large area covering the West Pacific Ocean, China's Mainland, and the East Indian Ocean is very important to improve prediction of the East Asian monsoon climate. The objective of this study is to identify a reasonable configuration of physical parameterization schemes to simulate the precipitation and temperature in this large area. The Mellor-Yamada-Janjic (MYJ) and Yonsei University (YSU) PBL schemes, the WSM3 and WSM5 microphysics schemes, and the Betts-Miller-Janjic (BMJ) and Tiedtke cumulus schemes are compared through simulation of the regional climate of summer 2008. All cases exhibit a similar spatial distribution of temperature as observed, and the spatial correlation coefficients are all higher than 0.95. The cases combining MY J, WSM3/WSM5, and BMJ have the smallest biases of temperature. The choice of PBL scheme has a significant effect on precipitation in such a large area. The cases with MYJ reproduce a better distribution of rain belts, while YSU strongly overestimates the precipitation intensity. The precipitation simulated using WSM3 is similar to that using WSM5. The BMJ cumulus scheme combined with the MYJ PBL scheme has a smaller bias of precipitation. However, the Tiedtke scheme reproduces the precipitation pattern better, especially over the ITCZ.展开更多
This paper presents projections of climate extremes over China under global warming of 1.5,2,and 3℃ above pre-industrial(1861–1900),based on the latest Coupled Model Intercomparison Project phase 6(CMIP6)simulations...This paper presents projections of climate extremes over China under global warming of 1.5,2,and 3℃ above pre-industrial(1861–1900),based on the latest Coupled Model Intercomparison Project phase 6(CMIP6)simulations.Results are compared with what produced by the precedent phase of the project,CMIP5.Model evaluation for the reference period(1985–2005)indicates that CMIP6 models outperform their predecessors in CMIP5,especially in simulating precipitation extremes.Areal averages for changes of most indices are found larger in CMIP6 than in CMIP5.The emblematic annual mean temperature,when averaged over the whole of China in CMIP6,increases by 1.49,2.21,and 3.53℃(relative to1985–2005)for 1.5,2,and 3℃ above-preindustrial global warming levels,while the counterpart in CMIP5 is 1.20,1.93 and 3.39℃ respectively.Similarly,total precipitation increases by 5.3%,8.6%,and16.3%in CMIP6 and by 4.4%,7.0%and 12.8%in CMIP5,respectively.The spatial distribution of changes for extreme indices is generally consistent in both CMIP5 and CMIP6,but with significantly higher increases in CMIP6 over Northeast and Northwest China for the hottest day temperature,and South China for the coldest night temperature.In the south bank of the Yangtze River,and most regions around40°N,CMIP6 shows higher increases for both total precipitation and heavy precipitation.The projected difference between CMIP6 and CMIP5 is mainly attributable to the physical upgrading of climate models and largely independent from their emission scenarios.展开更多
Land surface process modeling of high and cold area with vegetation cover has not yielded satisfactory results in previous applications. In this study, land surface energy budget is simulated using a land surface mode...Land surface process modeling of high and cold area with vegetation cover has not yielded satisfactory results in previous applications. In this study, land surface energy budget is simulated using a land surface model for the A'rou meadow in the upper-reach area of the Heihe River Basin in the eastern Tibetan Plateau. The model performance is evaluated using the in-situ observations and remotely sensed data. Sensible and soil heat fluxes are overestimated while latent heat flux is underestimated when the default parameter setting is used. By analyzing physical and physiological processes and the sensitivities of key parameters, the inappropriate default setting of optimum growth and inhibition temperatures is identified as an important reason for the bias. The average daytime temperature during the period of fastest vegetation growth(June and July) is adopted as the optimum growth temperature, and the inhibition temperatures were adjusted using the same increment as the optimum temperature based on the temperature acclimation. These adjustments significantly reduced the biases in sensible, latent, and soil heat fluxes.展开更多
基金the Nation Basic Research Program of China(973 Program,Research No.2007CB411500)
文摘On the basis of analyzing the importance of cryospheric researches in China and current status of cryospheric sciences in the world, this paper addresses key issues and main contents of present cryospheric sciences in China. The key issues currently addressed are: i) mechanisms of different types of glaciers in response to climate change and the scale-conversion in water resources assessments; ii) modeling of water and heat exchanges between frozen soil and vegetation; iii) parameterization of physical processes in cryosphere as well as coupling with climate models. To gain full clarification of these key issues, works of the following three aspects should be highlighted, i.e., cryospheric processes and responses to climate change, influences of cryospheric changes, and adaptation strategies for cryospheric changes.
基金funded by the National Natural Science Foundation of China[General Project,grant number 41275108]the Strategic Priority Research Program of the Chinese Academy of Sciences[grant number XDA11010404]
文摘Enhancing the ability of the WRF model in simulating a large area covering the West Pacific Ocean, China's Mainland, and the East Indian Ocean is very important to improve prediction of the East Asian monsoon climate. The objective of this study is to identify a reasonable configuration of physical parameterization schemes to simulate the precipitation and temperature in this large area. The Mellor-Yamada-Janjic (MYJ) and Yonsei University (YSU) PBL schemes, the WSM3 and WSM5 microphysics schemes, and the Betts-Miller-Janjic (BMJ) and Tiedtke cumulus schemes are compared through simulation of the regional climate of summer 2008. All cases exhibit a similar spatial distribution of temperature as observed, and the spatial correlation coefficients are all higher than 0.95. The cases combining MY J, WSM3/WSM5, and BMJ have the smallest biases of temperature. The choice of PBL scheme has a significant effect on precipitation in such a large area. The cases with MYJ reproduce a better distribution of rain belts, while YSU strongly overestimates the precipitation intensity. The precipitation simulated using WSM3 is similar to that using WSM5. The BMJ cumulus scheme combined with the MYJ PBL scheme has a smaller bias of precipitation. However, the Tiedtke scheme reproduces the precipitation pattern better, especially over the ITCZ.
基金supported by the National Key Research and Development Program of China(2017YFA0603804,2016YFA0600402,and 2018YFC1507704)。
文摘This paper presents projections of climate extremes over China under global warming of 1.5,2,and 3℃ above pre-industrial(1861–1900),based on the latest Coupled Model Intercomparison Project phase 6(CMIP6)simulations.Results are compared with what produced by the precedent phase of the project,CMIP5.Model evaluation for the reference period(1985–2005)indicates that CMIP6 models outperform their predecessors in CMIP5,especially in simulating precipitation extremes.Areal averages for changes of most indices are found larger in CMIP6 than in CMIP5.The emblematic annual mean temperature,when averaged over the whole of China in CMIP6,increases by 1.49,2.21,and 3.53℃(relative to1985–2005)for 1.5,2,and 3℃ above-preindustrial global warming levels,while the counterpart in CMIP5 is 1.20,1.93 and 3.39℃ respectively.Similarly,total precipitation increases by 5.3%,8.6%,and16.3%in CMIP6 and by 4.4%,7.0%and 12.8%in CMIP5,respectively.The spatial distribution of changes for extreme indices is generally consistent in both CMIP5 and CMIP6,but with significantly higher increases in CMIP6 over Northeast and Northwest China for the hottest day temperature,and South China for the coldest night temperature.In the south bank of the Yangtze River,and most regions around40°N,CMIP6 shows higher increases for both total precipitation and heavy precipitation.The projected difference between CMIP6 and CMIP5 is mainly attributable to the physical upgrading of climate models and largely independent from their emission scenarios.
基金supported by the National Natural Science Foundation of China(Grant Nos.91125002,40971221)FP7 CEOP-AEGI(Coordinated Asia European Long-Term Observing System of the Qinhai Tibet Plateau Hydro-meteorological Processes and the Asian Monsoon System with Ground Satellite Image data and numerical simulation)project
文摘Land surface process modeling of high and cold area with vegetation cover has not yielded satisfactory results in previous applications. In this study, land surface energy budget is simulated using a land surface model for the A'rou meadow in the upper-reach area of the Heihe River Basin in the eastern Tibetan Plateau. The model performance is evaluated using the in-situ observations and remotely sensed data. Sensible and soil heat fluxes are overestimated while latent heat flux is underestimated when the default parameter setting is used. By analyzing physical and physiological processes and the sensitivities of key parameters, the inappropriate default setting of optimum growth and inhibition temperatures is identified as an important reason for the bias. The average daytime temperature during the period of fastest vegetation growth(June and July) is adopted as the optimum growth temperature, and the inhibition temperatures were adjusted using the same increment as the optimum temperature based on the temperature acclimation. These adjustments significantly reduced the biases in sensible, latent, and soil heat fluxes.