An augmented proportional-integral sliding surface was designed for a sliding mode controller. A chatter free sliding mode control strategy for a chaotic coal mine power grid was developed. The stability of the contro...An augmented proportional-integral sliding surface was designed for a sliding mode controller. A chatter free sliding mode control strategy for a chaotic coal mine power grid was developed. The stability of the control strategy was proven by Lyapunov stability theorem. The proposed sliding mode control strategy eliminated the chattering phenomenon by replacing the sign function with a saturation function, and by replacing the constant coefficients in the reaching law with adaptive ones. An immune genetic algorithm was used to optimize the parameters in the improved reaching law. The cut-in time of the controllers was optimized to reduce the peak energy of their output. Simulations showed that the proposed sliding mode controller has good, chatter flee performance.展开更多
This paper investigates an approach to improve the engagement quality of controlled transfer clutch mode in 4 wheel drive(WD) car from three considerations of reducing friction,smoothening responsiveness and alleviati...This paper investigates an approach to improve the engagement quality of controlled transfer clutch mode in 4 wheel drive(WD) car from three considerations of reducing friction,smoothening responsiveness and alleviating jerk.The method utilizes an improved sliding mode control with genetic algorithm instead of simplified mode to determine appropriate values of parameters in control close- loop.The simulation results show that the method is effective for improving the engagement quality of coupling satisfying different design needs for 4WD car,as well as robustness even if input torque is changed at a certain range.展开更多
As an important development direction of pure electric vehicle drive system,the distributed drive system has the advantages of compact structure,high transmission efficiency,and flexible control,but there are some ser...As an important development direction of pure electric vehicle drive system,the distributed drive system has the advantages of compact structure,high transmission efficiency,and flexible control,but there are some serious problems such as high performance requirements to the drive motors,complex control strategies,and poor reliability.To solve these problems,a two motors dual-mode coupling drive system has been developed at first,which not only has the capacity of two-speed gear shifting,but also can automatically switch between the distributed drive and the centralized drive by means of modes change control.So,the performance requirements to the drive motors can be reduced,the problem of abnormal running caused by the fault of unilateral distributed drive systems also can be resolved by replacing the drive mode with centralized drive.Then,the system parameters primary and the optimum matching under the principle of efficiency optimization have been carried out,which makes the drive system achieve predetermined functions and meet the actual demands of different operating statuses.At last,the economic comparison of a pure electric vehicle installation with a dual-mode coupling drive sytem,a single-motor centralized drive system or a dual-motor distributed drive system in the simulation conditions has been completed.Compared with other systems,the driving range of the electric vehicle driven by the designed system is significantly increased,which proves the better efficiency and application value of the system.展开更多
基金the National Natural Science Foundation of China (No. 51107143)the Fundamental Research Funds for the Central Universities (No. 2010QNB33)
文摘An augmented proportional-integral sliding surface was designed for a sliding mode controller. A chatter free sliding mode control strategy for a chaotic coal mine power grid was developed. The stability of the control strategy was proven by Lyapunov stability theorem. The proposed sliding mode control strategy eliminated the chattering phenomenon by replacing the sign function with a saturation function, and by replacing the constant coefficients in the reaching law with adaptive ones. An immune genetic algorithm was used to optimize the parameters in the improved reaching law. The cut-in time of the controllers was optimized to reduce the peak energy of their output. Simulations showed that the proposed sliding mode controller has good, chatter flee performance.
文摘This paper investigates an approach to improve the engagement quality of controlled transfer clutch mode in 4 wheel drive(WD) car from three considerations of reducing friction,smoothening responsiveness and alleviating jerk.The method utilizes an improved sliding mode control with genetic algorithm instead of simplified mode to determine appropriate values of parameters in control close- loop.The simulation results show that the method is effective for improving the engagement quality of coupling satisfying different design needs for 4WD car,as well as robustness even if input torque is changed at a certain range.
基金supported by the National Key Technology R&D Program of the Ministry of Science and Technology(Grant No.2013BAG14B01)the Shandong Provincial Natural Science Foundation of China(Grant No.ZR2012EEL08)China Postdoctoral Science Foundation Funded Project(Grant No.2013M530608)
文摘As an important development direction of pure electric vehicle drive system,the distributed drive system has the advantages of compact structure,high transmission efficiency,and flexible control,but there are some serious problems such as high performance requirements to the drive motors,complex control strategies,and poor reliability.To solve these problems,a two motors dual-mode coupling drive system has been developed at first,which not only has the capacity of two-speed gear shifting,but also can automatically switch between the distributed drive and the centralized drive by means of modes change control.So,the performance requirements to the drive motors can be reduced,the problem of abnormal running caused by the fault of unilateral distributed drive systems also can be resolved by replacing the drive mode with centralized drive.Then,the system parameters primary and the optimum matching under the principle of efficiency optimization have been carried out,which makes the drive system achieve predetermined functions and meet the actual demands of different operating statuses.At last,the economic comparison of a pure electric vehicle installation with a dual-mode coupling drive sytem,a single-motor centralized drive system or a dual-motor distributed drive system in the simulation conditions has been completed.Compared with other systems,the driving range of the electric vehicle driven by the designed system is significantly increased,which proves the better efficiency and application value of the system.