基于软件实现的多核系统模拟器执行计算密集/数据密集任务的时效性极差,且存在模拟精度和性能评估准确性差的不足,限制其在多核系统结构优化探索中的应用。文章提出一种周期精确的软硬件协同多核系统模拟器(cycle accurate hardware-sof...基于软件实现的多核系统模拟器执行计算密集/数据密集任务的时效性极差,且存在模拟精度和性能评估准确性差的不足,限制其在多核系统结构优化探索中的应用。文章提出一种周期精确的软硬件协同多核系统模拟器(cycle accurate hardware-software co-simulator,CAHSCS),通过在传统模拟器架构中引入硬件计算和存储模块,CAHSCS能有效改善全系统的模拟速度、精度,提高性能评估的准确性。复杂真实任务加载实验结果表明,CAHSCS将大规模复杂数据的运算效率提高了10倍,显著加快了系统设计收敛速度。展开更多
Imagination持续专注于为客户的芯片产品提供最佳的真实世界性能,通过改善延迟、片上架构、内存控制器以及内存特性,新款Series7XT Plus GPU实现了进一步的系统内性能与效率提升。这些功能提升是以全面的硬件模拟器(emulator)分析与GP...Imagination持续专注于为客户的芯片产品提供最佳的真实世界性能,通过改善延迟、片上架构、内存控制器以及内存特性,新款Series7XT Plus GPU实现了进一步的系统内性能与效率提升。这些功能提升是以全面的硬件模拟器(emulator)分析与GPU IP调校来进行系统性能建模为基础,并充分考虑了市场与客户的反馈意见。这些增强功能包括:展开更多
This paper is a contribution to the development of real time simulators for energy conversion research with respects to the "hardware in the loop simulation" concept. The focus is on the study of marine current kine...This paper is a contribution to the development of real time simulators for energy conversion research with respects to the "hardware in the loop simulation" concept. The focus is on the study of marine current kinetics energy conversion from into electrical energy using a marine current turbine simulator, developed in three stages. In the first stage the marine current turbine is emulated with the help of an induction drive who reproduces at its shaft the characteristics of a real turbine. It is connected with a load break used to force the emulator to respect on its shaft the characteristics of the real turbine. In the second stage, the induction drive is connected on the shaft with a doubly feed induction generator, for the study of energy conversion. The emulator respects the working regime, developed in the previous step, of a real turbine due to the control of the drive. In the third stage the induction machine emulating the turbine is interconnected with the generator and the load break. This assembly is used for the dynamic study of the marine current turbine. The break is used to create extra loads on the shaft and a variable inertial moment.展开更多
文摘基于软件实现的多核系统模拟器执行计算密集/数据密集任务的时效性极差,且存在模拟精度和性能评估准确性差的不足,限制其在多核系统结构优化探索中的应用。文章提出一种周期精确的软硬件协同多核系统模拟器(cycle accurate hardware-software co-simulator,CAHSCS),通过在传统模拟器架构中引入硬件计算和存储模块,CAHSCS能有效改善全系统的模拟速度、精度,提高性能评估的准确性。复杂真实任务加载实验结果表明,CAHSCS将大规模复杂数据的运算效率提高了10倍,显著加快了系统设计收敛速度。
文摘Imagination持续专注于为客户的芯片产品提供最佳的真实世界性能,通过改善延迟、片上架构、内存控制器以及内存特性,新款Series7XT Plus GPU实现了进一步的系统内性能与效率提升。这些功能提升是以全面的硬件模拟器(emulator)分析与GPU IP调校来进行系统性能建模为基础,并充分考虑了市场与客户的反馈意见。这些增强功能包括:
文摘This paper is a contribution to the development of real time simulators for energy conversion research with respects to the "hardware in the loop simulation" concept. The focus is on the study of marine current kinetics energy conversion from into electrical energy using a marine current turbine simulator, developed in three stages. In the first stage the marine current turbine is emulated with the help of an induction drive who reproduces at its shaft the characteristics of a real turbine. It is connected with a load break used to force the emulator to respect on its shaft the characteristics of the real turbine. In the second stage, the induction drive is connected on the shaft with a doubly feed induction generator, for the study of energy conversion. The emulator respects the working regime, developed in the previous step, of a real turbine due to the control of the drive. In the third stage the induction machine emulating the turbine is interconnected with the generator and the load break. This assembly is used for the dynamic study of the marine current turbine. The break is used to create extra loads on the shaft and a variable inertial moment.