基于Gabor框架的窄脉冲信号采样及重构效果已经得到验证,其解决了有限新息率(finite rate of innovation,FRI)采样方法无法在波形未知的情况下重构出脉冲波形的问题.但是目前的Gabor框架采样系统的窗函数构造复杂且难以物理实现.本文将...基于Gabor框架的窄脉冲信号采样及重构效果已经得到验证,其解决了有限新息率(finite rate of innovation,FRI)采样方法无法在波形未知的情况下重构出脉冲波形的问题.但是目前的Gabor框架采样系统的窗函数构造复杂且难以物理实现.本文将指数再生窗函数引入Gabor框架,将窗函数序列调制部分简化为一阶巴特沃斯模拟滤波器,构造了Gabor系数重构所需要的压缩感知(compressed sensing,CS)测量矩阵.为了使得测量矩阵满足信号精确重构所需的约束等距特性(restricted isometry property,RIP),根据高阶指数样条函数能量聚集特性,选择了最优的窗函数支撑宽度,推导了信号重构所需的约束条件,还对其鲁棒性进行了分析.本文通过仿真实验对上述分析进行了有效验证,该系统可应用于测试仪器、状态监测、雷达及通信领域等多种背景下的窄脉冲信号采样与重构.展开更多
多标签分类任务广泛存在于现实生活中,然而其经常存在不均衡数据问题,严重影响了分类性能.目前解决该问题的主流技术为重采样方法,主要分为过采样和欠采样,过采样通过生成与少数类标签相关的样本,欠采样则是通过删除与多数类标签相关的...多标签分类任务广泛存在于现实生活中,然而其经常存在不均衡数据问题,严重影响了分类性能.目前解决该问题的主流技术为重采样方法,主要分为过采样和欠采样,过采样通过生成与少数类标签相关的样本,欠采样则是通过删除与多数类标签相关的样本.然而,这些方法都专注于解决一种不均衡问题,即标签内不均衡或标签间不均衡,导致在解决一种不均衡的同时可能引入另一种不均衡.针对该问题,本文提出一种基于安全欠采样的不均衡多标签数据集成学习方法ESUS(Ensemble learning method based on Safe Under-Sampling).首先通过标签划分将多标签不均衡数据集划分成单标签数据集和标签对数据集,针对单标签数据集,提出一种安全欠采样方法解决标签内不均衡问题,并利用采样后的均衡数据集构建二分类模型.对于标签对数据集,进行数据剪枝后利用集成学习解决标签间不均衡问题,在保持分类性能的同时降低时空复杂度.最后将单标签数据集模型和标签对数据集模型集成为最终的分类模型.在六个多标签不均衡数据集上的实验结果表明:和七种对比方法相比,ESUS方法在四个评价指标上更稳定有效.展开更多
文摘多标签分类任务广泛存在于现实生活中,然而其经常存在不均衡数据问题,严重影响了分类性能.目前解决该问题的主流技术为重采样方法,主要分为过采样和欠采样,过采样通过生成与少数类标签相关的样本,欠采样则是通过删除与多数类标签相关的样本.然而,这些方法都专注于解决一种不均衡问题,即标签内不均衡或标签间不均衡,导致在解决一种不均衡的同时可能引入另一种不均衡.针对该问题,本文提出一种基于安全欠采样的不均衡多标签数据集成学习方法ESUS(Ensemble learning method based on Safe Under-Sampling).首先通过标签划分将多标签不均衡数据集划分成单标签数据集和标签对数据集,针对单标签数据集,提出一种安全欠采样方法解决标签内不均衡问题,并利用采样后的均衡数据集构建二分类模型.对于标签对数据集,进行数据剪枝后利用集成学习解决标签间不均衡问题,在保持分类性能的同时降低时空复杂度.最后将单标签数据集模型和标签对数据集模型集成为最终的分类模型.在六个多标签不均衡数据集上的实验结果表明:和七种对比方法相比,ESUS方法在四个评价指标上更稳定有效.