期刊文献+
共找到26篇文章
< 1 2 >
每页显示 20 50 100
基于残差双注意力与跨级特征融合模块的静态手势识别 被引量:2
1
作者 吴佳璐 田秋红 岳金鸿 《计算机系统应用》 2022年第11期111-119,共9页
为解决卷积神经网络提取特征遗漏、手势多特征提取不充分问题,本文提出基于残差双注意力与跨级特征融合模块的静态手势识别方法.设计了一种残差双注意力模块,该模块对ResNet50网络提取的低层特征进行增强,能够有效学习关键信息并更新权... 为解决卷积神经网络提取特征遗漏、手势多特征提取不充分问题,本文提出基于残差双注意力与跨级特征融合模块的静态手势识别方法.设计了一种残差双注意力模块,该模块对ResNet50网络提取的低层特征进行增强,能够有效学习关键信息并更新权重,提高对高层特征的注意力,然后由跨级特征融合模块对不同阶段的高低层特征进行融合,丰富高级特征图中不同层级之间的语义和位置信息,最后使用全连接层的Softmax分类器对手势图像进行分类识别.本文在ASL美国手语数据集上进行实验,平均准确率为99.68%,相比基础ResNet50网络准确率提升2.52%.结果验证本文方法能充分提取与复用手势特征,有效提高手势图像的识别精度. 展开更多
关键词 手势图像识别 ResNet 残差注意力模块 跨级特征融合 深度学习
在线阅读 下载PDF
基于EM自注意力残差的图像超分辨率重建网络
2
作者 黄淑英 胡瀚洋 +2 位作者 杨勇 万伟国 吴峥 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2024年第2期388-397,共10页
基于深度学习的图像超分辨率(SR)重建方法主要通过增加模型的深度来提升图像重建的质量,但同时增加了模型的计算代价,很多网络利用注意力机制来提高特征提取能力,但难以充分学习到不同区域的特征。为此,提出一种基于期望最大化(EM)自注... 基于深度学习的图像超分辨率(SR)重建方法主要通过增加模型的深度来提升图像重建的质量,但同时增加了模型的计算代价,很多网络利用注意力机制来提高特征提取能力,但难以充分学习到不同区域的特征。为此,提出一种基于期望最大化(EM)自注意力残差的图像超分辨率重建网络。该网络通过改进基础残差块,构建特征增强残差块,以更好地复用残差块中所提取的特征。为增加特征信息在空间上的相关性,引入EM自注意力机制,构建EM自注意力残差模块来增强模型中每个模块的特征提取能力,并通过级联EM自注意力残差模块来构建整个模型的特征提取结构。所获得的特征图通过上采样的图像重建模块获得重建的高分辨率图像。将所提方法与主流方法进行实验对比,结果表明:所提方法在5个流行的SR测试集上能够取得较好的主观视觉效果和更优的性能指标。 展开更多
关键词 超分辨率重建 注意力机制 期望最大化 特征增强残差 EM自注意力残差模块
在线阅读 下载PDF
基于多级残差信息蒸馏的真实图像去噪方法 被引量:1
3
作者 冯妍舟 刘建霞 +2 位作者 王海翼 冯国昊 白宇 《计算机工程》 CAS CSCD 北大核心 2024年第3期216-223,共8页
深度神经网络对真实图像有较强的去噪能力,可以学习含噪图像和干净图像之间复杂的非线性映射关系。然而,过多的卷积操作导致计算成本增加并占据大量内存,限制了去噪技术在低运算能力设备中的应用,现有去噪算法容易损坏细节信息,恢复图... 深度神经网络对真实图像有较强的去噪能力,可以学习含噪图像和干净图像之间复杂的非线性映射关系。然而,过多的卷积操作导致计算成本增加并占据大量内存,限制了去噪技术在低运算能力设备中的应用,现有去噪算法容易损坏细节信息,恢复图像存在边缘过度平滑、纹理缺失、含有残留噪声等问题。针对这些问题,构造一种多级残差信息蒸馏模块。通过对特征通道进行分割,保留部分特征用于后续多级融合,并进一步通过深度提取单元提取细化后的特征信息;引入对比度感知通道注意力机制对不同通道的特征分配权重;使用多级跳跃连接充分融合不同阶段提取到的上下文信息。构建1个轻量级的多级残差信息蒸馏网络,采用块间复杂度低的编码-解码结构,编码部分为含噪图像特征提取模块,解码部分为干净图像恢复模块。为了加快训练速度,采用混合图像尺寸的渐进式训练方法。实验结果表明,该方法在SSID和DND真实图像数据集上的峰值信噪比分别为39.43 dB和39.49 dB,与其他网络相比提升了0.17~15.77 dB和0.02~7.06 dB,而模型参数量仅为6.92×106,所提模型在提高去噪性能的同时具有较少的参数量。 展开更多
关键词 图像复原 真实图像去噪 多级残差信息蒸馏模块 深度提取模块 对比度感知通道注意力
在线阅读 下载PDF
融合密集空洞注意力金字塔和多尺度的视网膜病变分割
4
作者 王志鲁 池越 +3 位作者 周亚同 单春艳 肖志涛 王劭奇 《中国医学物理学杂志》 CSCD 2024年第8期1000-1009,共10页
针对糖尿病视网膜病变(DR)分割任务中病变区域多尺度特征难以学习、边界模糊等问题,提出一种改进的U型多病变分割模型DDAPNet。首先,对DR图像进行Patch处理,使模型更好地捕捉病变的局部特征;其次在主干特征提取后引入重新设计的密集空... 针对糖尿病视网膜病变(DR)分割任务中病变区域多尺度特征难以学习、边界模糊等问题,提出一种改进的U型多病变分割模型DDAPNet。首先,对DR图像进行Patch处理,使模型更好地捕捉病变的局部特征;其次在主干特征提取后引入重新设计的密集空洞注意力金字塔(DDAP)模块,扩大感受野,解决病变边界模糊问题;同时采用金字塔切分注意力进行特征增强,然后将二者进行特征融合;最后在跳跃连接中嵌入改进的残差注意力模块,降低浅层冗余信息的干扰。在数据集和医院真实数据集上进行联合验证,实验结果表明,相较于基础模型,DDAPNet模型对微动脉瘤、出血点、软渗出DDR物和硬渗出物的分割在Dice系数上分别提高了4.31%、2.52%、3.39%、4.29%,在mIoU上分别提高了1.80%、2.24%、4.28%、1.98%。该模型对病灶边缘的分割更为连续和平滑,有效提升了软渗出物等视网膜病变的分割性能。 展开更多
关键词 糖尿病视网膜病变 密集空洞注意力金字塔 多尺度特征 残差模块
在线阅读 下载PDF
多分支残差特征蒸馏网络的图像超分辨重建 被引量:2
5
作者 李轩 刘立柱 《小型微型计算机系统》 CSCD 北大核心 2023年第2期363-369,共7页
近年来基于深度卷积神经网络的单幅图像超分辨率技术取得了很大进展.但特征提取方式单一,模型参数量大很难在移动端部署.为了解决这些问题,本文提出了一种多分支残差特征蒸馏算法.首先,通过多分支残差模块进行深层特征提取;其次,结合卷... 近年来基于深度卷积神经网络的单幅图像超分辨率技术取得了很大进展.但特征提取方式单一,模型参数量大很难在移动端部署.为了解决这些问题,本文提出了一种多分支残差特征蒸馏算法.首先,通过多分支残差模块进行深层特征提取;其次,结合卷积、通道自适应激活函数和瓶颈注意力模块进行特征蒸馏及融合,减少平坦区域的大量冗余参数,在保证性能的同时降低模型复杂度;最后通过亚像素卷积层进行图像重建,得到最终的超分辨率图像.实验结果表明该算法在模型复杂度和性能上达到更好的平衡.与IMDN(Information Multi-distillation Network)相比,该算法的PSNR和SSIM分别有0.06~0.26dB与0.001~0.006的提升;在2倍超分重建结果中,与千万级参数量模型DBPN(Deep Back-Projection Networks)相比,本文算法参数量是其1/15,PSNR基本相同,SSIM提高0.001. 展开更多
关键词 图像超分辨率 多分支卷积 残差模块 注意力机制 特征蒸馏
在线阅读 下载PDF
面向表情识别的重影非对称残差注意力网络模型 被引量:2
6
作者 闫河 李梦雪 +1 位作者 张宇宁 刘建骐 《智能系统学报》 CSCD 北大核心 2023年第2期333-340,共8页
针对ResNet50中的Bottleneck经过1×1卷积降维后主干分支丢失部分特征信息而导致在表情识别中准确率不高的问题,本文通过引入Ghost模块和深度可分离卷积分别替换Bottleneck中的1×1卷积和3×3卷积,保留更多原始特征信息,提... 针对ResNet50中的Bottleneck经过1×1卷积降维后主干分支丢失部分特征信息而导致在表情识别中准确率不高的问题,本文通过引入Ghost模块和深度可分离卷积分别替换Bottleneck中的1×1卷积和3×3卷积,保留更多原始特征信息,提升主干分支的特征提取能力;利用Mish激活函数替换Bottleneck中的ReLU激活函数,提高了表情识别的准确率;在此基础上,通过在改进的Bottleneck之间添加非对称残差注意力模块(asymmetric residual attention block, ARABlock)来提升模型对重要信息的表示能力,从而提出一种面向表情识别的重影非对称残差注意力网络(ghost asymmetric residual attention network, GARAN)模型。对比实验结果表明,本文方法在FER2013和CK+表情数据集上具有较高的识别准确率。 展开更多
关键词 表情识别 特征提取 ResNet50 Ghost模块 Mish 非对称残差注意力 深度可分离卷积 深度学习
在线阅读 下载PDF
基于密集残差连接U型网络的噪声图像超分辨率重建
7
作者 刘鹏南 李龙 +2 位作者 张紫豪 朱星光 程德强 《工矿自动化》 CSCD 北大核心 2024年第2期63-71,共9页
现有的图像超分辨率重建网络难以适用于煤矿井下噪声密集的应用场景,且多数网络通过增加深度提升性能会导致无法有效提取关键特征、高频信息丢失等问题。针对上述问题,提出了一种密集残差连接U型网络,用于对低分辨率噪声图像进行超分辨... 现有的图像超分辨率重建网络难以适用于煤矿井下噪声密集的应用场景,且多数网络通过增加深度提升性能会导致无法有效提取关键特征、高频信息丢失等问题。针对上述问题,提出了一种密集残差连接U型网络,用于对低分辨率噪声图像进行超分辨率重建。在特征提取路径中引入基于密集残差连接的去噪模块,通过密集连接的方式对图像特征进行充分提取,再利用残差学习的特点对低分辨率噪声图像进行有效去噪;在重建路径中引入残差特征注意力蒸馏模块,通过在残差块中融入增强特征注意力块,对不同空间的特征赋予不同的权重,加强网络对于图像关键特征的提取能力,同时减少图像细节特征在残差块中的损失,从而更好地恢复图像细节信息。在煤矿井下图像数据集及公共数据集上进行了对比实验,结果表明:在客观评价指标上,所提网络的结构相似度、图像感知相似度均优于对比网络,且在复杂度及运行速度上有着较好的均衡;在主观视觉效果上,所提网络重建的图像基本消除了原有图像噪声,有效恢复了图像的细节特征。 展开更多
关键词 噪声图像 超分辨率重建 密集残差连接 U型网络 去噪模块 残差特征注意力蒸馏模块
在线阅读 下载PDF
面向超分辨率重建的层次间局部特征增强网络
8
作者 王晓峰 黄煜婷 +2 位作者 张文尉 张轩 陈东方 《计算机工程与设计》 北大核心 2024年第8期2407-2414,共8页
基于卷积神经网络的超分辨率重建模型以单项传播为主,层次越靠后感知信息的能力越微弱,导致层次间局部特征部分丢失,难以实质提升网络的特征表达能力。针对此问题,提出层次间局部特征增强网络。该方法由级联残差模块、层次间特征增强块... 基于卷积神经网络的超分辨率重建模型以单项传播为主,层次越靠后感知信息的能力越微弱,导致层次间局部特征部分丢失,难以实质提升网络的特征表达能力。针对此问题,提出层次间局部特征增强网络。该方法由级联残差模块、层次间特征增强块和特征感知注意力机制组成。级联残差模块通过有效残差连接增加对残差分支信息的利用;层次间特征增强块提取不同深度特征的依赖关系,自适应调整中间层特征权值增强捕获关键信息的能力;特征感知注意力机制采用方向感知和位置判断的方式准确定位和识别感兴趣对象。多项标准数据集的实验结果表明,该方法能改善超分辨率的视觉重建效果,整体性能优于现有方法。 展开更多
关键词 卷积神经网络 超分辨率 局部特征增强 级联残差模块 注意力机制 方向感知 位置判断
在线阅读 下载PDF
采用动态样本分配的特征融合目标检测算法 被引量:1
9
作者 牛文涛 王鹏 +3 位作者 陈遵田 李晓艳 郜辉 孙梦宇 《计算机工程与应用》 CSCD 北大核心 2024年第15期211-220,共10页
针对轻量级目标检测算法SSD-Lite检测精度低、对小目标预测能力差等问题,提出了一种采用动态样本分配策略的多尺度特征融合目标检测算法。在轻量级目标检测算法SSD-Lite的颈部网络引入特征金字塔结构(feature pyramid network,FPN),并... 针对轻量级目标检测算法SSD-Lite检测精度低、对小目标预测能力差等问题,提出了一种采用动态样本分配策略的多尺度特征融合目标检测算法。在轻量级目标检测算法SSD-Lite的颈部网络引入特征金字塔结构(feature pyramid network,FPN),并对其进行轻量化设计,同时引入残差特征增强模块(residual feature augmentation,RFA),采用残差分支注入不同空间的上下文信息来改善高层特征的特征表达,以提升网络对小目标的检测能力;在特征金字塔结构中插入轻量级注意力机制ECA模块,提升网络对重要特征的关注能力;针对网络训练过程中采用的固定交并比(intersection-over-union,IOU)阈值的样本分配策略导致的正负样本分配适应性差、难以选出高质量正样本等问题,设计了一种动态样本分配策略,取消锚框的预设置,采用中心点采样的方式,同时结合样本均值、标准差作为筛选阈值,减少人工先验的影响,在不改变网络结构的情况下提升算法性能。算法在Pascal VOC数据集上测试,实验结果表明:该算法整体预测精度相较于基准算法提升1.9个百分点,对小目标检测能力提升3.3个百分点,算法推理时延仅增加2.32%;实验证明了该算法可以以较小的性能代价,显著提升算法的预测精度。 展开更多
关键词 特征金字塔结构 残差特征增强模块 轻量级注意力机制 动态样本分配策略
在线阅读 下载PDF
平衡多尺度注意力网络的视网膜血管分割算法 被引量:2
10
作者 梁礼明 余洁 +2 位作者 陈鑫 周珑颂 冯新刚 《计算机工程与设计》 北大核心 2023年第2期480-487,共8页
针对现有算法对微血管分割精度低、难以区分病灶区域等问题,提出一种平衡多尺度注意力网络用于分割视网膜血管。在编码阶段引入多尺度特征提取模块,提升感受野减少血管细节特征损失;在编码和解码器间增加细节增强模块,突出目标区域提高... 针对现有算法对微血管分割精度低、难以区分病灶区域等问题,提出一种平衡多尺度注意力网络用于分割视网膜血管。在编码阶段引入多尺度特征提取模块,提升感受野减少血管细节特征损失;在编码和解码器间增加细节增强模块,突出目标区域提高信息敏感度;设计平衡尺度注意力模块调节细节和语义特征进行最终预测,减少伪影现象。实验结果表明,在DRIVE数据集上分割准确率为96.42%、灵敏度为83.17%、特异性为98.27%,优于现有其它算法。 展开更多
关键词 图像处理 血管分割 空洞卷积 多尺度特征融合 校准残差模块 细节增强模块 注意力机制
在线阅读 下载PDF
多尺度融合的双分支特征提取人群计数算法 被引量:1
11
作者 曾芸芸 张红英 袁明东 《计算机工程与应用》 CSCD 北大核心 2024年第20期224-232,共9页
人群计数在公共安全管理、公共空间设计以及其他视觉任务如行为分析、拥塞分析等方面具有重要的应用。然而复杂的背景和人头尺度大小不一导致人群计数的效果并不理想。针对静态图像中尺度变化和背景干扰问题,提出了一种基于双分支中间... 人群计数在公共安全管理、公共空间设计以及其他视觉任务如行为分析、拥塞分析等方面具有重要的应用。然而复杂的背景和人头尺度大小不一导致人群计数的效果并不理想。针对静态图像中尺度变化和背景干扰问题,提出了一种基于双分支中间特征提取的人群计数网络——DBFE_MFNet。该网络沿用编码-解码器结构,在编码阶段使用VGG19卷积神经网络的前16层,为了更好融合多尺度信息,将VGG19卷积神经网络的前16层的后4层卷积替换成空洞率为2的膨胀卷积,解码部分采用抑制背景干扰的残差卷积注意力模块(residual convolutional attention module,RCAM),在编码-解码器结构中间插入双分支中间特征提取模块(dual branch intermediate feature extraction module,DBFE),分支1采用金字塔结构并融合位置注意力模块提取多尺度上下文信息,分支2沿用金字塔结构融合双通道注意力机制使模型关注不同大小人头信息,最后使用1×1卷积生成密度图。实验方面,在ShanghaiTech PartA、ShanghaiTech PartB、Mall数据集上进行了算法对比实验,DBFE_MFNet模型在上述数据集的平均绝对误差和均方根误差分别为63.2、7.1、1.80和99.2、11.8、2.28,经对比实验分析,DBFE_MFNet模型具有不错的计数性能和稳定性能;在ShanghaiTech PartB进行了消融实验,实验验证了模型各模块的有效性。 展开更多
关键词 人群计数 VGG19 编码-解码器 残差卷积注意力模块 双分支中间特征提取模块
在线阅读 下载PDF
融合局部和全局特征的息肉分割模型
12
作者 张攀峰 杨贺 +2 位作者 神显豪 程小辉 杜慧 《电子测量技术》 北大核心 2024年第16期100-109,共10页
针对现有模型在息肉分割中存在复杂区域分割困难、边缘细节信息丢失、泛化能力不足等问题,提出一种融合局部和全局特征的息肉分割模型。以卷积神经网络和Transformer作为并行编码器,使模型可以兼顾多种尺度的局部细节特征和全局语义特征... 针对现有模型在息肉分割中存在复杂区域分割困难、边缘细节信息丢失、泛化能力不足等问题,提出一种融合局部和全局特征的息肉分割模型。以卷积神经网络和Transformer作为并行编码器,使模型可以兼顾多种尺度的局部细节特征和全局语义特征;在跳跃连接处构建注意力增强模块和多尺度残差模块,前者强化模型对重要信息的关注度,后者高效探索目标区域并准确预测其边界,同时促进不同层次特征之间的交互;在解码阶段采用基于残差的逐步上采样特征融合方式汇聚各阶段特征,进一步增强模型的感知能力,丰富息肉特征;最后使用高效预测头促进浅层特征的融合,输出分割结果。该模型在多个对比实验中表现最优,同次优模型相比,在Kvasir、CVC-ClinicDB数据集上,mDice平均提升了1.21%;mIoU平均提升了1.82%;在CVC-ColonDB、ETIS数据集上,mDice平均提升了2.67%,mIoU平均提升了2.83%。实验结果表明,相比于现有主流模型,该模型具有较优的分割精度和泛化性能。 展开更多
关键词 息肉分割 TRANSFORMER 卷积神经网络 注意力增强模块 多尺度残差模块 特征融合
在线阅读 下载PDF
基于注意力机制的自然场景文本检测算法
13
作者 王宪伟 洪智勇 +2 位作者 余文华 王惠吾 吴卓霖 《计算机科学与应用》 2022年第11期2608-2618,共11页
针对目前主流场景文本检测算法在进行多尺度特征融合时不能够充分利用高、低层信息造成的文本漏检,以及长文本边界检测错误的问题,本文提出一种应用注意力机制的多尺度特征融合与残差坐标注意力的场景文本检测算法。该算法将注意力特征... 针对目前主流场景文本检测算法在进行多尺度特征融合时不能够充分利用高、低层信息造成的文本漏检,以及长文本边界检测错误的问题,本文提出一种应用注意力机制的多尺度特征融合与残差坐标注意力的场景文本检测算法。该算法将注意力特征融合模块嵌入到金字塔中,通过纠正不同尺度特征的不一致性来提取更多的细节信息,以改善文本的漏检;在融合之后,使用残差坐标注意力模块在纵、横两个方向上捕获方向感知和位置敏感信息,细化边界信息,以优化长文本检测的效果。通过在公开数据集ICDAR 2015和Total-Text上的实验结果表明,该算法在F分数上分别达到了85.5%和83.6%,在推理速度上分别达到了22.4 FPS和40 FPS,相较于DBNet网络,在推理速度上略有下降,但在F分数上分别提高3.2%和0.8%。 展开更多
关键词 场景文本检测 深度学习 多尺度特征 注意力特征融合模块 残差坐标注意力模块
在线阅读 下载PDF
改进U-Net网络的多视觉图像特征张量分割仿真
14
作者 刘慧慧 裴庆庆 《计算机仿真》 2024年第3期237-241,共5页
针对图像分割计算量大、噪声因素影响等问题,提出改进U-Net网络的多视觉特征图像分割方法。对同一窗口中的灰度值排序,计算像素点极大值与极小值,根据角度与像素点的关系,检测噪声点,将被污染的噪声点放入集合中,使用其它像素点替换该点... 针对图像分割计算量大、噪声因素影响等问题,提出改进U-Net网络的多视觉特征图像分割方法。对同一窗口中的灰度值排序,计算像素点极大值与极小值,根据角度与像素点的关系,检测噪声点,将被污染的噪声点放入集合中,使用其它像素点替换该点,完成滤波;分别从颜色、纹理与形状三个方面提取图像的多视觉特征,为图像分割提供参考依据;利用编码器、解码器和跳跃连接层建立U-Net网络,将提取的特征作为网络输入,新增深度残差模块,经过残差学习,实现特征映射;引入注意力模块,减少特征维度,确定张量权重,利用池化层拼接特征维度,输出最终分割特征张量。实验结果表明,所提方法对于分割目标的敏感度较高,不容易出现过分割与欠分割现象。 展开更多
关键词 多视觉特征 图像分割 深度残差模块 注意力模块
在线阅读 下载PDF
面向高分遥感影像道路提取的轻量级双注意力和特征补偿残差网络模型 被引量:10
15
作者 陈振 陈芸芝 +1 位作者 吴婷 李佳优 《地球信息科学学报》 CSCD 北大核心 2022年第5期949-961,共13页
针对高分辨率遥感影像背景复杂,道路提取容易受阴影、建筑物和铁路等背景信息干扰的问题,提出一种带有轻量级双注意力和特征补偿机制的DAFCResUnet模型。该模型在ResUnet的基础上,通过增加轻量级的双注意力和特征补偿模块实现模型在性... 针对高分辨率遥感影像背景复杂,道路提取容易受阴影、建筑物和铁路等背景信息干扰的问题,提出一种带有轻量级双注意力和特征补偿机制的DAFCResUnet模型。该模型在ResUnet的基础上,通过增加轻量级的双注意力和特征补偿模块实现模型在性能和时空复杂度上的平衡。其中,双注意力模块可以增强模型的特征提取能力,特征补偿模块可以融合网络中来自深浅层的道路特征。在DeepGlobe和GF-2道路数据集上的实验结果表明,DAFCResUnet模型的IoU和F1-score可以达到0.6713、0.8033和0.7402、0.8507,模型的整体精度优于U-Net、ResUnet和VNet模型。与U-Net和ResUnet模型相比,DAFCResUnet模型仅增加了少量的计算量和参数量,但IoU和F1-score均有较大幅度的提高;与VNet模型相比,DAFCResUnet模型在计算量和参数量远低于VNet的情况下取得了更高的精度,模型在精度和时空复杂度两方面均有优势。相比其他对比模型,DAFCResUnet模型具有更强的特征提取和抗干扰能力,能更好解决道路上的干扰物、与道路特征相似地物、树荫或阴影遮挡等造成的道路空洞、误提和漏提现象。 展开更多
关键词 深度学习 道路提取 高分辨率遥感影像 残差网络 U-Net模型 注意力模块 编解码器 特征补偿
原文传递
基于改进残差网络的锂离子电池故障诊断 被引量:5
16
作者 段双明 徐超 《电池》 CAS 北大核心 2023年第3期257-261,共5页
针对残差网络(ResNet)对特征提取准确率低和拟合度不够的问题,提出一种基于改进残差网络的锂离子电池故障诊断方法。首先,利用Simulink对电池容量变小、内阻变大、充电不足和自放电大等4种故障进行故障模拟,得到故障电压数据,作为输入,... 针对残差网络(ResNet)对特征提取准确率低和拟合度不够的问题,提出一种基于改进残差网络的锂离子电池故障诊断方法。首先,利用Simulink对电池容量变小、内阻变大、充电不足和自放电大等4种故障进行故障模拟,得到故障电压数据,作为输入,将首层提取的特征因式分解,分别加到后面的每一层;然后,引入注意力模块(SELayer)分支轻量化;最后,采用反卷积上采样,使远距离残差特征融合,加深特征提取能力,并降低计算量。改进残差网络故障模拟实验表明,与传统的ResNet50、ResNext、DensNet121和DensNet169等4种模型相比,所提模型的诊断准确率从88.63%提高到99.00%以上,参数量从2 500万减小到了2 470万,收敛速度上也具有一定的优势。 展开更多
关键词 锂离子电池 特征提取 故障诊断 残差神经网络 注意力模块
在线阅读 下载PDF
基于压缩图像与YOLOv5模型的架空输电线路缺陷检测技术
17
作者 刘敏 姜亮 +2 位作者 田杨阳 张璐 陈岑 《沈阳工业大学学报》 北大核心 2025年第2期152-159,共8页
【目的】输电线路作为电能传输和使用过程中的重要环节,其安全稳定对电力系统的正常运行起着至关重要的作用,因此输电线路日常巡检具有重要作用。重大事故通常由微小缺陷隐患发展而来,日常巡检通常采用人工、无人机、可视化通道等手段,... 【目的】输电线路作为电能传输和使用过程中的重要环节,其安全稳定对电力系统的正常运行起着至关重要的作用,因此输电线路日常巡检具有重要作用。重大事故通常由微小缺陷隐患发展而来,日常巡检通常采用人工、无人机、可视化通道等手段,无论何种方式都需要处理大量可视化、红外或者紫外照片。但由于输电线路的特殊性,架设条件涉及多种环境,其巡检图像背景通常较为复杂,采用人工复核审查的方式精度较高,但对经验依赖较大且效率极低。如何快速、准确地识别架空线路巡检图片是架空输电线路缺陷识别的关键。传统输电线路巡检图片识别方法在复杂背景的干扰下,容易出现缺陷识别精确度不高的问题。【方法】为提高架空输电线路巡检图像复杂背景下的检测准确率,提出了一种兼顾识别效率和准确性的缺陷检测方法。基于压缩图像技术并结合YOLOv5模型,设计了一种基于稀疏卷积的非对称特征聚合压缩算法,将原始图像通过编码减少图像存储所需空间以便于存储和传输,经过信息通道传输到解密器后,再将压缩图像进行解码复原以提升局部集合特征的学习效率。同时,通过融入通道空间注意力模块从特征图中得到注意力通道权重矩阵和空间权重矩阵,并通过权重矩阵判断特征图区域的重要程度,完成对YOLOv5模型处理效率的提升。【结果】将压缩恢复后的图像输入改进YOLOv5模型中,利用通道注意力模块(CAM)和空间注意力模块(SAM)分别对图像进行通道与空间上的注意力数据处理,通过全局平均池化和最大池化处理增强目标区域的特征,并引入空间注意力模块增强通道注意力对特征位置信息的关注,以检测出存在缺陷的设备,并通过实验验证了方法的有效性。【结论】以某架空线路的巡检图像数据集为基础,对检测方法开展训练与测试,结果表明,巡检图像经所提技术压缩后,尺寸明显减小,恢复后的图像尺寸较原图约降低了3 MB且未出现失真;改进YOLOv5模型具有较高的检测精确度,其检测准确率和时间分别为0.91和0.87 s,算法在降低图像尺寸提升检测速度的同时保证了检测准确率。 展开更多
关键词 架空输电线路 缺陷检测 图像压缩 改进YOLOv5模型 非对称特征聚合编解码网络 通道空间注意力模块 逐通道稀疏残差卷积 检测准确率
在线阅读 下载PDF
基于RSSD的遥感图像目标检测算法 被引量:1
18
作者 吕向东 彭超亮 +3 位作者 陈治国 孙鹏飞 赵晓楠 徐旸 《现代电子技术》 北大核心 2024年第7期49-53,共5页
针对SSD算法检测遥感图像目标时存在容易漏检且检测精度低的问题,提出基于残差SSD网络的遥感图像目标检测算法。该算法在SSD网络结构的基础上,将基准网络模型VGG替换为残差网络模型ResNet-50,通过增加网络深度,充分提取遥感图像小目标... 针对SSD算法检测遥感图像目标时存在容易漏检且检测精度低的问题,提出基于残差SSD网络的遥感图像目标检测算法。该算法在SSD网络结构的基础上,将基准网络模型VGG替换为残差网络模型ResNet-50,通过增加网络深度,充分提取遥感图像小目标数据集的底层特征,引入注意力模块,使感受野更关注目标特征,增强低层网络的信息表征能力,采用特征金字塔融合方法融合网络结构的高层语义特征和低层视觉特征,增强检测目标的定位能力。实验结果表明,该算法增强了复杂背景的干扰抑制性,提高了小目标的检测精度,比传统的SSD算法具有更强的检测性能。 展开更多
关键词 SSD 残差网络 注意力模块 金字塔融合 遥感图像 小目标 高层语义特征 低层视觉特征
在线阅读 下载PDF
跨层双线性策略的视网膜病变分级算法
19
作者 梁礼明 金家新 +1 位作者 李俞霖 董信 《计算机工程与设计》 北大核心 2024年第12期3794-3801,共8页
针对糖尿病视网膜病变(diabetic retinopathy,DR)中存在类间差异小和病变区域识别困难等问题,提出一种跨层双线性策略的视网膜病变分级算法。对输入图像进行高斯滤波等预处理方法增强图像特征的差异性,使用Res2Net-50双模型提取特征并... 针对糖尿病视网膜病变(diabetic retinopathy,DR)中存在类间差异小和病变区域识别困难等问题,提出一种跨层双线性策略的视网膜病变分级算法。对输入图像进行高斯滤波等预处理方法增强图像特征的差异性,使用Res2Net-50双模型提取特征并进行特征增强;通过多分支注意力模块聚焦病变区域,减少不相关信息的关注;使用像素注意力引导融合模块对不同尺度的特征信息融合。在IDRID数据集上二次加权系数为91.82%、准确率为80.58%、敏感性为97.10%、特异性为97.05%,APTOS 2019数据集上准确率为84.28%,二次加权系数为90.05%,结果表明该算法具有一定应用价值。 展开更多
关键词 视网膜病变分级 双线性模型 注意力机制 像素融合 图像处理 残差网络 特征增强和特征抑制模块
在线阅读 下载PDF
基于改进YOLOv8的飞机检测研究
20
作者 贾军 任祺 《工业控制计算机》 2024年第9期9-11,共3页
随着无人机技术和航空监控系统的迅速发展,高效准确的飞机检测技术变得日益重要。提出了一种基于改进的YOLOv8模型的飞机检测方法,旨在提高检测的准确性和实时性。首先,引入了反向残差注意力模块(iRMB),通过改进的注意力机制增强模型对... 随着无人机技术和航空监控系统的迅速发展,高效准确的飞机检测技术变得日益重要。提出了一种基于改进的YOLOv8模型的飞机检测方法,旨在提高检测的准确性和实时性。首先,引入了反向残差注意力模块(iRMB),通过改进的注意力机制增强模型对飞机特征的学习能力。其次,采用中心化特征金字塔(EVC)模块,优化了特征提取过程,增强了模型对不同尺度飞机的检测能力。此外还采用了改进的距离交并比(MDIoU)作为损失函数,进一步提升了模型的定位精度。在公开数据集Caltech101的飞机类别上的实验结果表明,与现有的飞机检测方法相比,提出的方法在检测精度和召回率方面分别达到98.2%和98.9%,特别是在复杂背景和多尺度目标检测场景中表现更为突出。该研究的成果对于提高航空安全监控系统的效能具有重要意义。 展开更多
关键词 YOLOv8 飞机检测 反向残差注意力模块 中心化特征金字塔 MDIoU
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部