The turbulence enhancement by particle wake effect is studied by large eddy simulation (LES) of turbulent gas flows passing a single particle. The predicted time-averaged and root-mean-square fluctuation velocities ...The turbulence enhancement by particle wake effect is studied by large eddy simulation (LES) of turbulent gas flows passing a single particle. The predicted time-averaged and root-mean-square fluctuation velocities behind the particle are in agreement with the Reynolds-averaged Navier-Stokes modeling results and experimental results. A semi-empirical turbulence enhancement model is proposed by the present-authors based on the LES resuits. This model is incorporated into the second-order moment two-phase turbulence model for simulating vertical gas-particle pipe flows and horizontal gas-particle channel flows. The simulation results show that compared with the model not accounting for the particle wake effect, the present model gives simulation results for the gas turbulence modulation in much better agreement with the experimental results.展开更多
The effect of wall roughness on particle behavior in two-phase flows in a horizontal backward-facing step is studied using a phase-Doppler particle anemometer. The results show that the wall roughness widens the parti...The effect of wall roughness on particle behavior in two-phase flows in a horizontal backward-facing step is studied using a phase-Doppler particle anemometer. The results show that the wall roughness widens the particle velocity probability density distribution, enhances the redistribution of particle velocity into different directions, reduces the particle longitudinal mean velocity and increases the longitudinal and transverse fluctuation velocities and Reynolds shear stress. The effect of roughness on particle motion in the recirculation zone is weaker than that in the fully developed flow region. The effect of roughness for small particles is restricted only in the near-wall region, while that for large particles diffuses to the whole flow field.展开更多
Systematic experimental work was conducted to investigate the solid acceleration length in a 16m long circulating fluidized bed riser with fluid cracking catalyst particles over a wide range of operating conditions. A...Systematic experimental work was conducted to investigate the solid acceleration length in a 16m long circulating fluidized bed riser with fluid cracking catalyst particles over a wide range of operating conditions. A more feasible method is proposed to determine the acceleration length from the measured axial profiles of pressure gradient (or apparent solid holdup). With this new method and large amount of experimental data, a clear picture on the variation of the acceleration length with both solid circulating rate and superficial gas velocity is obtained.It is found that the acceleration length increases generally with increasing solid flow rate and/or decreasing gas velocity. However, the trend in variation of the acceleration length with operating conditions are quite different in different operation ranges. Reasonable explanations are suggested for the observed variation patterns of acceleration length.展开更多
To investigate the influence of coherent structures in the gas-particle wake flow, direct numerical simulation (DNS) method was adopted to compute a two-dimensional particle laden wake flow. A high accuracy spectral e...To investigate the influence of coherent structures in the gas-particle wake flow, direct numerical simulation (DNS) method was adopted to compute a two-dimensional particle laden wake flow. A high accuracy spectral element method (SEM) was employed to simulate the gas flow field and a Lagrangian approach was used to compute the particles movement. Numerical results showed that at the same Stokes numbers, particles would be greatly impacted by the development of the coherent structure. But with different Stokes numbers, it can be seen that the large-scale vortex structures would influence the particle flow differently. While under different Reynolds numbers (150 and 200), there are no great changes in the particle laden flow.展开更多
We develop a simple approach to obtain explicitly exact analytical expressions of particle and kinetic-energy densities for noninteracting Fermi gases in one-dimensional harmonic confinement, and in one-dimensional bo...We develop a simple approach to obtain explicitly exact analytical expressions of particle and kinetic-energy densities for noninteracting Fermi gases in one-dimensional harmonic confinement, and in one-dimensional boxconfinement as well.展开更多
Large-eddy simulation(LES) is under its rapid development and is recognized as a possible second generation of CFD methods used in engineering.Large-eddy simulation of two-phase flows and combustion is particularly im...Large-eddy simulation(LES) is under its rapid development and is recognized as a possible second generation of CFD methods used in engineering.Large-eddy simulation of two-phase flows and combustion is particularly important for engineering applications.Some investigators,including the present authors,give their review on LES of spray combustion in gas-turbine combustors and internal combustion engines.However,up to now only a few papers are related to the state-of-the-art on LES of gas-particle flows and combustion.In this paper a review of the advances in LES of complex gas-particle flows and coal combustion is presented.Different sub-grid scale(SGS) stress models and combustion models are described,some of the main results are summarized,and some research needs are discussed.展开更多
The main goal of this work is to explore the possibility of using Au-modified hydroxyapatite(HA) as a potential sensor material. Tube-like HA structure was fabricated with the aid of a Nafion N-117 cation exchange mem...The main goal of this work is to explore the possibility of using Au-modified hydroxyapatite(HA) as a potential sensor material. Tube-like HA structure was fabricated with the aid of a Nafion N-117 cation exchange membrane and gold(Au) nanoparticles were added by a hydrothermal method. The morphology, structure and composition were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), and X-ray photoelectron spectroscopy(XPS). The gas sensing properties were also investigated. Results show that Au nanoparticles are dispersed into the HA powder, which is tube-like, with rough inner and outer surfaces. Compared with pure HA, Au-modified HA exhibits improved sensing properties for NH_3. 5%(mass fraction) Au-modified HA shows the highest response with relatively short response/recovery time. The response is up to 79.2% when the corresponding sensor is exposed to 200×10^(-6) NH_3 at room temperature, and the response time and recovery time are 20 s and 25 s, respectively. For lower concentration, like 50×10^(-6), the response is still up to 70.8%. Good selectivity and repeatability are also observed. The sensing mechanism of high response and selectivity for NH_3 gas was also discussed. These results suggest that Au-HA composite is a promising material for NH_3 sensors operating at room temperature.展开更多
An experimental study was conducted to investigate the 2 D bubbly flow downstream of a cylinder. Sparsely distributed bubbles were produced using the ventilation method. The carrier flow was measured using the particl...An experimental study was conducted to investigate the 2 D bubbly flow downstream of a cylinder. Sparsely distributed bubbles were produced using the ventilation method. The carrier flow was measured using the particle image velocimetry(PIV) technique. The shadow imaging technique was used to capture instantaneous bubbly flow images. An image-processing code was compiled to identify bubbles in acquired image, calculate the bubble equivalent diameter and the bubble velocity. The effects of Reynolds number and the flow rate of the injected air were considered. The result indicates that the carrier flow is featured by distinct flow structures and the wake region is suppressed as the upstream velocity increases. Regarding the bubbles trapped in the wake flow, the number of small bubbles increases with the upstream velocity. On the whole, the bubble velocity is slightly lower than that of the carrier flow. The consistency between small bubbles and the carrier flow is high in terms of velocity magnitude, which is justified near the wake edge. The difference between the bubble velocity and the carrier flow velocity is remarkable near the wake centerline. For certain Reynolds number, with the increase in the air flow rate, the bubble equivalent diameter increases and the bubble void fraction is elevated.展开更多
Respiration particles can be collected into a dust catcher by an inside inhalingand outside pressing particle collector. The work environment of the grab operator in tunneling mining was improved when a dust catcher i...Respiration particles can be collected into a dust catcher by an inside inhalingand outside pressing particle collector. The work environment of the grab operator in tunneling mining was improved when a dust catcher is placed before the working face of thegrab operator. The particle movement was affected by the gas flow. The flow field insideand outside the dust collector was simulated. The effect of the operating parameter wasanalyzed. The numerical results show a good approach to predict the gas flow and particledistribution in the inside and outside of the particle collector.展开更多
Over the past years, great achievements have been made in the development of coating technologies for surface improvement of aluminum alloys. Despite these achievements, the role in the market strongly depends on the ...Over the past years, great achievements have been made in the development of coating technologies for surface improvement of aluminum alloys. Despite these achievements, the role in the market strongly depends on the ability of surface coating technology under technical and economic considerations to meet the increased demands for heavy tribological applications of aluminum alloys. Microplasma oxidation (MPO) technology has recently been studied as a novel and effective means to provide thick and hard ceramic coating with improved properties such as excellent load-bearing and wear resistance properties on aluminum alloys. The present work covers the evaluation of the performances of current single and duplex coatings combining MPO, physical vapor deposition (PVD), and plasma assisted chemical vapor deposition (PACVD) coatings on aluminum alloys. It suggests that the MPO coating is a promising candidate for design engineers to apply aluminum alloys to heavy load-bearing applications. The prospective future for the research on MPO coatings is introduced as well.展开更多
The effects of plasma (ions, electrons) and other energetic particles are now widely used for substrate cleaning as well as to assist and control thin film growth and various applications. In this work, historical r...The effects of plasma (ions, electrons) and other energetic particles are now widely used for substrate cleaning as well as to assist and control thin film growth and various applications. In this work, historical review of the plasma and its various types are given and described. Different types of gas discharge and plasma production are also discussed in detail. Furthermore, technique of ion beam extraction from a plasma source for sputtering process by using a suitable electrode is carefully studied and given. In further consequence, a general review about the physics and mechanism of sputtering processes is studied. Different types of sputtering techniques are investigated and clarified. Theoretical treatment for determination of sputtering yield for low and high atomic species elements as a function of energy from 100 to 5,000 eV are studied and discussed. Finally, various applications of plasma-and-ion beam sputtering will also be mentioned and discussed.展开更多
Thermophoresis is an important mechanism of micro-particle transport due to temperature gradients in the surrounding medium.It has numerous applications,especially in the field of aerosol technology.This study has num...Thermophoresis is an important mechanism of micro-particle transport due to temperature gradients in the surrounding medium.It has numerous applications,especially in the field of aerosol technology.This study has numerically investigated the thermophoretic deposition efficiency of particles in a laminar gas flow in a concentric annulus using the critical trajectory method.The governing equations are the momentum and energy equations for the gas and the particle equations of motion.The effects of the annulus size,particle diameter,the ratio of inner to outer radius of tube and wall temperature on the deposition efficiency were studied for both developing and fully-developed flows.Simulation results suggest that thermophoretic deposition increases by increasing thermal gradient,deposition distance,and the ratio of inner to outer radius,but decreases with increasing particle size.It has been found that by taking into account the effect of developing flow at the entrance region,higher deposition efficiency was obtained,than fully developed flow.展开更多
The turbulence behavior of gas-liquid two-phase flow plays an important role in heat transfer and mass transfer in many chemical processes. In this work, a 2D particle image velocimetry (PIV) was used to investigate t...The turbulence behavior of gas-liquid two-phase flow plays an important role in heat transfer and mass transfer in many chemical processes. In this work, a 2D particle image velocimetry (PIV) was used to investigate the turbulent characteristic of fluid induced by a chain of bubbles rising in Newtonian and non-Newtonian fluids. The instantaneous flow field, turbulent kinetic energy (TKE) and TKE dissipation rate were measured. The results demonstrated that the TKE profiles were almost symmetrical along the column center and showed higher values in the central region of the column. The TKE was enhanced with the increase of gas flow and decrease of liquid viscosity. The maximum TKE dissipation rate appeared on both sides of the bubble chain, and increased with the increase of gas flow rate or liquid viscosity. These results provide an understanding for gas-liquid mass transfer in non-Newtonian fluids.展开更多
Due to the higher reliability and small ground space requirement, compressed GIS (gas insulated substation) has found extensive applications in urban areas and developing countries. The major parts of GIS is the gas...Due to the higher reliability and small ground space requirement, compressed GIS (gas insulated substation) has found extensive applications in urban areas and developing countries. The major parts of GIS is the gas insulated busducts, circuit breakers, isolators, etc.. The voltage withstand capability of SF6 (sulphur hexafluoride) busduct is strongly dependent on field perturbations such as those caused by conductor surface imperfections and by conducting particle contaminants which arise due to manufacturing process, mechanical vibrations, moving parts of system etc.. Contamination can create insulation problems at operating fields. An optimized design of GIS by varying the inner and outer diameter to 89 mm and 241 mm is considered for analysis and compared with a single phase enclosure with outer diameter as 152 mm and inner conductor diameter of 55 mm with aluminum and copper particles of size 10 mm in length and 0.25 mm in radius present on the enclosure. The results have been compared on the extent of particle movement for the same condition of the gas and particle geometry. Monte Carlo simulation is also carried out for determining the motion of particles in axial and radial directions. The random solid angle is changed from 1 to 0.5 degrees to take into account more smooth end profile of the particle. The simulation results have been presented and analyzed.展开更多
A k - ε-PDF model based on statistical theory for turbulent gas-particle flows is proposed,and a numerical procedure combining the finite difference and finite fluctuating-velocity -group methods is used.The obtained...A k - ε-PDF model based on statistical theory for turbulent gas-particle flows is proposed,and a numerical procedure combining the finite difference and finite fluctuating-velocity -group methods is used.The obtained statistically averaged equations have the same form as those obtained by using the Reynolds averaging.Using the k -ε-PDF model (PDF particle turbulence model combined with the k - ε gas turbulence model),many terms,such as the diffusion term in particle Reynolds Stress equations,can be accurately calculated for verifying the second-moment-closure model.The k - ε- PDF model is used to simulate sudden-expansion particle-laded flow.comparison of the predictions using both k -ε-PDF and the k - ε- kp models with experimental results shows that the k - ε-PDF model give more reasonable non-isotropic features of particle turbulence.展开更多
基金Supported by the Major Project of National Natural Science Foundation of China (No.10632070) the Postdoctoral ScienceFoundation (No.2004036239).
文摘The turbulence enhancement by particle wake effect is studied by large eddy simulation (LES) of turbulent gas flows passing a single particle. The predicted time-averaged and root-mean-square fluctuation velocities behind the particle are in agreement with the Reynolds-averaged Navier-Stokes modeling results and experimental results. A semi-empirical turbulence enhancement model is proposed by the present-authors based on the LES resuits. This model is incorporated into the second-order moment two-phase turbulence model for simulating vertical gas-particle pipe flows and horizontal gas-particle channel flows. The simulation results show that compared with the model not accounting for the particle wake effect, the present model gives simulation results for the gas turbulence modulation in much better agreement with the experimental results.
基金the Special Funds for Major State Basic Research of China (No. G-1999-0222-08).
文摘The effect of wall roughness on particle behavior in two-phase flows in a horizontal backward-facing step is studied using a phase-Doppler particle anemometer. The results show that the wall roughness widens the particle velocity probability density distribution, enhances the redistribution of particle velocity into different directions, reduces the particle longitudinal mean velocity and increases the longitudinal and transverse fluctuation velocities and Reynolds shear stress. The effect of roughness on particle motion in the recirculation zone is weaker than that in the fully developed flow region. The effect of roughness for small particles is restricted only in the near-wall region, while that for large particles diffuses to the whole flow field.
基金the National Natural Science foundation of China (No. 29928005).
文摘Systematic experimental work was conducted to investigate the solid acceleration length in a 16m long circulating fluidized bed riser with fluid cracking catalyst particles over a wide range of operating conditions. A more feasible method is proposed to determine the acceleration length from the measured axial profiles of pressure gradient (or apparent solid holdup). With this new method and large amount of experimental data, a clear picture on the variation of the acceleration length with both solid circulating rate and superficial gas velocity is obtained.It is found that the acceleration length increases generally with increasing solid flow rate and/or decreasing gas velocity. However, the trend in variation of the acceleration length with operating conditions are quite different in different operation ranges. Reasonable explanations are suggested for the observed variation patterns of acceleration length.
文摘To investigate the influence of coherent structures in the gas-particle wake flow, direct numerical simulation (DNS) method was adopted to compute a two-dimensional particle laden wake flow. A high accuracy spectral element method (SEM) was employed to simulate the gas flow field and a Lagrangian approach was used to compute the particles movement. Numerical results showed that at the same Stokes numbers, particles would be greatly impacted by the development of the coherent structure. But with different Stokes numbers, it can be seen that the large-scale vortex structures would influence the particle flow differently. While under different Reynolds numbers (150 and 200), there are no great changes in the particle laden flow.
文摘We develop a simple approach to obtain explicitly exact analytical expressions of particle and kinetic-energy densities for noninteracting Fermi gases in one-dimensional harmonic confinement, and in one-dimensional boxconfinement as well.
基金Supported by the National Natural Science Foundation of China (50606026,50736006)the Foundation of State Key Laboratory of Engines,Tianjin University (K-2010-07)
文摘Large-eddy simulation(LES) is under its rapid development and is recognized as a possible second generation of CFD methods used in engineering.Large-eddy simulation of two-phase flows and combustion is particularly important for engineering applications.Some investigators,including the present authors,give their review on LES of spray combustion in gas-turbine combustors and internal combustion engines.However,up to now only a few papers are related to the state-of-the-art on LES of gas-particle flows and combustion.In this paper a review of the advances in LES of complex gas-particle flows and coal combustion is presented.Different sub-grid scale(SGS) stress models and combustion models are described,some of the main results are summarized,and some research needs are discussed.
基金Project(51272289) supported by the National Natural Science Foundation of China
文摘The main goal of this work is to explore the possibility of using Au-modified hydroxyapatite(HA) as a potential sensor material. Tube-like HA structure was fabricated with the aid of a Nafion N-117 cation exchange membrane and gold(Au) nanoparticles were added by a hydrothermal method. The morphology, structure and composition were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), and X-ray photoelectron spectroscopy(XPS). The gas sensing properties were also investigated. Results show that Au nanoparticles are dispersed into the HA powder, which is tube-like, with rough inner and outer surfaces. Compared with pure HA, Au-modified HA exhibits improved sensing properties for NH_3. 5%(mass fraction) Au-modified HA shows the highest response with relatively short response/recovery time. The response is up to 79.2% when the corresponding sensor is exposed to 200×10^(-6) NH_3 at room temperature, and the response time and recovery time are 20 s and 25 s, respectively. For lower concentration, like 50×10^(-6), the response is still up to 70.8%. Good selectivity and repeatability are also observed. The sensing mechanism of high response and selectivity for NH_3 gas was also discussed. These results suggest that Au-HA composite is a promising material for NH_3 sensors operating at room temperature.
基金Supported by the National Natural Science Foundation of China(51676087)
文摘An experimental study was conducted to investigate the 2 D bubbly flow downstream of a cylinder. Sparsely distributed bubbles were produced using the ventilation method. The carrier flow was measured using the particle image velocimetry(PIV) technique. The shadow imaging technique was used to capture instantaneous bubbly flow images. An image-processing code was compiled to identify bubbles in acquired image, calculate the bubble equivalent diameter and the bubble velocity. The effects of Reynolds number and the flow rate of the injected air were considered. The result indicates that the carrier flow is featured by distinct flow structures and the wake region is suppressed as the upstream velocity increases. Regarding the bubbles trapped in the wake flow, the number of small bubbles increases with the upstream velocity. On the whole, the bubble velocity is slightly lower than that of the carrier flow. The consistency between small bubbles and the carrier flow is high in terms of velocity magnitude, which is justified near the wake edge. The difference between the bubble velocity and the carrier flow velocity is remarkable near the wake centerline. For certain Reynolds number, with the increase in the air flow rate, the bubble equivalent diameter increases and the bubble void fraction is elevated.
基金Supported by National Key Basic Research and Development Scheme(2005CB221500)the Introduction of Talent Fund of Henan Polytechnic University(648201)
文摘Respiration particles can be collected into a dust catcher by an inside inhalingand outside pressing particle collector. The work environment of the grab operator in tunneling mining was improved when a dust catcher is placed before the working face of thegrab operator. The particle movement was affected by the gas flow. The flow field insideand outside the dust collector was simulated. The effect of the operating parameter wasanalyzed. The numerical results show a good approach to predict the gas flow and particledistribution in the inside and outside of the particle collector.
文摘Over the past years, great achievements have been made in the development of coating technologies for surface improvement of aluminum alloys. Despite these achievements, the role in the market strongly depends on the ability of surface coating technology under technical and economic considerations to meet the increased demands for heavy tribological applications of aluminum alloys. Microplasma oxidation (MPO) technology has recently been studied as a novel and effective means to provide thick and hard ceramic coating with improved properties such as excellent load-bearing and wear resistance properties on aluminum alloys. The present work covers the evaluation of the performances of current single and duplex coatings combining MPO, physical vapor deposition (PVD), and plasma assisted chemical vapor deposition (PACVD) coatings on aluminum alloys. It suggests that the MPO coating is a promising candidate for design engineers to apply aluminum alloys to heavy load-bearing applications. The prospective future for the research on MPO coatings is introduced as well.
文摘The effects of plasma (ions, electrons) and other energetic particles are now widely used for substrate cleaning as well as to assist and control thin film growth and various applications. In this work, historical review of the plasma and its various types are given and described. Different types of gas discharge and plasma production are also discussed in detail. Furthermore, technique of ion beam extraction from a plasma source for sputtering process by using a suitable electrode is carefully studied and given. In further consequence, a general review about the physics and mechanism of sputtering processes is studied. Different types of sputtering techniques are investigated and clarified. Theoretical treatment for determination of sputtering yield for low and high atomic species elements as a function of energy from 100 to 5,000 eV are studied and discussed. Finally, various applications of plasma-and-ion beam sputtering will also be mentioned and discussed.
文摘Thermophoresis is an important mechanism of micro-particle transport due to temperature gradients in the surrounding medium.It has numerous applications,especially in the field of aerosol technology.This study has numerically investigated the thermophoretic deposition efficiency of particles in a laminar gas flow in a concentric annulus using the critical trajectory method.The governing equations are the momentum and energy equations for the gas and the particle equations of motion.The effects of the annulus size,particle diameter,the ratio of inner to outer radius of tube and wall temperature on the deposition efficiency were studied for both developing and fully-developed flows.Simulation results suggest that thermophoretic deposition increases by increasing thermal gradient,deposition distance,and the ratio of inner to outer radius,but decreases with increasing particle size.It has been found that by taking into account the effect of developing flow at the entrance region,higher deposition efficiency was obtained,than fully developed flow.
基金Supported by the National Natural Science Foundation of China (21076139)the Opening Project of State Key Laboratory of Chemical Engineering (SKL-ChE-08B03)the Program of Introducing Talents of Discipline to Universities (B06006)
文摘The turbulence behavior of gas-liquid two-phase flow plays an important role in heat transfer and mass transfer in many chemical processes. In this work, a 2D particle image velocimetry (PIV) was used to investigate the turbulent characteristic of fluid induced by a chain of bubbles rising in Newtonian and non-Newtonian fluids. The instantaneous flow field, turbulent kinetic energy (TKE) and TKE dissipation rate were measured. The results demonstrated that the TKE profiles were almost symmetrical along the column center and showed higher values in the central region of the column. The TKE was enhanced with the increase of gas flow and decrease of liquid viscosity. The maximum TKE dissipation rate appeared on both sides of the bubble chain, and increased with the increase of gas flow rate or liquid viscosity. These results provide an understanding for gas-liquid mass transfer in non-Newtonian fluids.
文摘Due to the higher reliability and small ground space requirement, compressed GIS (gas insulated substation) has found extensive applications in urban areas and developing countries. The major parts of GIS is the gas insulated busducts, circuit breakers, isolators, etc.. The voltage withstand capability of SF6 (sulphur hexafluoride) busduct is strongly dependent on field perturbations such as those caused by conductor surface imperfections and by conducting particle contaminants which arise due to manufacturing process, mechanical vibrations, moving parts of system etc.. Contamination can create insulation problems at operating fields. An optimized design of GIS by varying the inner and outer diameter to 89 mm and 241 mm is considered for analysis and compared with a single phase enclosure with outer diameter as 152 mm and inner conductor diameter of 55 mm with aluminum and copper particles of size 10 mm in length and 0.25 mm in radius present on the enclosure. The results have been compared on the extent of particle movement for the same condition of the gas and particle geometry. Monte Carlo simulation is also carried out for determining the motion of particles in axial and radial directions. The random solid angle is changed from 1 to 0.5 degrees to take into account more smooth end profile of the particle. The simulation results have been presented and analyzed.
文摘A k - ε-PDF model based on statistical theory for turbulent gas-particle flows is proposed,and a numerical procedure combining the finite difference and finite fluctuating-velocity -group methods is used.The obtained statistically averaged equations have the same form as those obtained by using the Reynolds averaging.Using the k -ε-PDF model (PDF particle turbulence model combined with the k - ε gas turbulence model),many terms,such as the diffusion term in particle Reynolds Stress equations,can be accurately calculated for verifying the second-moment-closure model.The k - ε- PDF model is used to simulate sudden-expansion particle-laded flow.comparison of the predictions using both k -ε-PDF and the k - ε- kp models with experimental results shows that the k - ε-PDF model give more reasonable non-isotropic features of particle turbulence.