To investigate the wind⁃induced vibration re⁃sponse characteristics of multispan double⁃layer cable photo⁃voltaic(PV)support structures,wind tunnel tests using an aeroelastic model were carried out to obtain the wind⁃...To investigate the wind⁃induced vibration re⁃sponse characteristics of multispan double⁃layer cable photo⁃voltaic(PV)support structures,wind tunnel tests using an aeroelastic model were carried out to obtain the wind⁃induced vibration response data of a three⁃span four⁃row double⁃layer cable PV support system.The wind⁃induced vibration characteristics with different PV module tilt angles,wind speeds,and wind direction angles were analyzed.The results showed that the double⁃layer cable large⁃span flexible PV support can effectively control the wind⁃induced vibration response and prevent the occur⁃rence of flutter under strong wind conditions.The maxi⁃mum value of the wind⁃induced vibration displacement of the flexible PV support system occurs in the windward first row.The upstream module has a significant shading effect on the downstream module,with a maximum effect of 23%.The most unfavorable wind direction angles of the structure are 0°and 180°.The change of the wind direction angle in the range of 0°to 30°has little effect on the wind vi⁃bration response.The change in the tilt angle of the PV modules has a greater impact on the wind vibration in the downwind direction and a smaller impact in the upwind di⁃rection.Special attention should be paid to the structural wind⁃resistant design of such systems in the upwind side span.展开更多
The uniform design and response surface methodology (RSM) are applied to the multi-objective optimization of a 2-D mixed compression scramjet inlet. The set of experimental design points on the design space is selec...The uniform design and response surface methodology (RSM) are applied to the multi-objective optimization of a 2-D mixed compression scramjet inlet. The set of experimental design points on the design space is selected by the uniform design, and the inlet performance is analyzed by computational fluid dynamics (CFD). Then complete quadratic polynomial response surface approximation models are constructed based on the performance analysis results and then used to replace theoriginal complex inlet performance model. The optimization is conducted using a multi-objective genetic algorithm NSGA-Ⅱ, and the Pareto optimal solution set is obtained. Results show that the uniform design and RSM can reduce the computational complexity of numerical simulation and improve the optimization efficiency.展开更多
To improve the rotor off-axis response prediction, aerodynamic models must include the wake distortion effects of the maneuvering rotor. And the crux of the matter is to obtain a precise wake curvature parameter KR. A...To improve the rotor off-axis response prediction, aerodynamic models must include the wake distortion effects of the maneuvering rotor. And the crux of the matter is to obtain a precise wake curvature parameter KR. A Peters-He finite-state wake model is improved to incorporate the operating-state-dependent KR to embody maneuver-induced effects. The curvature parameter KR varies with rotor forward speed, thrust and maneuvering angular rate according to a smoking experiment. Moreover, aerodynamic force/moment experiment indicates that after a quasi-step angular input, both on-axis and off-axis rotor responses show that an overshoot and its amplitude increases with the pitching rate. The comparison between theoretical and experimental results shows that the operating-state-accurate curvature parameter must be adopted to obtain accurate aerodynamic forces/moments, especially for the off-axis response. Additionally, combined with a dynamic wake distortion model, the obtained correlation agrees well with experimental data.展开更多
One of the aerodynamic phenomena associated with high performance aircraft is the high frequency vortex induced buffeting. The buffeting load can lead to high cyclic strain and stress,dramatically reduce the fatigue ...One of the aerodynamic phenomena associated with high performance aircraft is the high frequency vortex induced buffeting. The buffeting load can lead to high cyclic strain and stress,dramatically reduce the fatigue life of composite structures. In this paper, piezoelectric patches are bonded on the surface of composite panel. The dynamic response of the structure is measured by using bonded piezoelectric sensors. Filtered adaptive control algorithm is used to control the strain of piezoelectric actuators actively, so as to increase the modal damping coefficient of the composite panel, suppress the dynamic response and improve the fatigue performance of the structure. The feasibility of this method is verified in model experiments.展开更多
基金The National Natural Science Foundation of China(No.52338011).
文摘To investigate the wind⁃induced vibration re⁃sponse characteristics of multispan double⁃layer cable photo⁃voltaic(PV)support structures,wind tunnel tests using an aeroelastic model were carried out to obtain the wind⁃induced vibration response data of a three⁃span four⁃row double⁃layer cable PV support system.The wind⁃induced vibration characteristics with different PV module tilt angles,wind speeds,and wind direction angles were analyzed.The results showed that the double⁃layer cable large⁃span flexible PV support can effectively control the wind⁃induced vibration response and prevent the occur⁃rence of flutter under strong wind conditions.The maxi⁃mum value of the wind⁃induced vibration displacement of the flexible PV support system occurs in the windward first row.The upstream module has a significant shading effect on the downstream module,with a maximum effect of 23%.The most unfavorable wind direction angles of the structure are 0°and 180°.The change of the wind direction angle in the range of 0°to 30°has little effect on the wind vi⁃bration response.The change in the tilt angle of the PV modules has a greater impact on the wind vibration in the downwind direction and a smaller impact in the upwind di⁃rection.Special attention should be paid to the structural wind⁃resistant design of such systems in the upwind side span.
文摘The uniform design and response surface methodology (RSM) are applied to the multi-objective optimization of a 2-D mixed compression scramjet inlet. The set of experimental design points on the design space is selected by the uniform design, and the inlet performance is analyzed by computational fluid dynamics (CFD). Then complete quadratic polynomial response surface approximation models are constructed based on the performance analysis results and then used to replace theoriginal complex inlet performance model. The optimization is conducted using a multi-objective genetic algorithm NSGA-Ⅱ, and the Pareto optimal solution set is obtained. Results show that the uniform design and RSM can reduce the computational complexity of numerical simulation and improve the optimization efficiency.
文摘To improve the rotor off-axis response prediction, aerodynamic models must include the wake distortion effects of the maneuvering rotor. And the crux of the matter is to obtain a precise wake curvature parameter KR. A Peters-He finite-state wake model is improved to incorporate the operating-state-dependent KR to embody maneuver-induced effects. The curvature parameter KR varies with rotor forward speed, thrust and maneuvering angular rate according to a smoking experiment. Moreover, aerodynamic force/moment experiment indicates that after a quasi-step angular input, both on-axis and off-axis rotor responses show that an overshoot and its amplitude increases with the pitching rate. The comparison between theoretical and experimental results shows that the operating-state-accurate curvature parameter must be adopted to obtain accurate aerodynamic forces/moments, especially for the off-axis response. Additionally, combined with a dynamic wake distortion model, the obtained correlation agrees well with experimental data.
文摘One of the aerodynamic phenomena associated with high performance aircraft is the high frequency vortex induced buffeting. The buffeting load can lead to high cyclic strain and stress,dramatically reduce the fatigue life of composite structures. In this paper, piezoelectric patches are bonded on the surface of composite panel. The dynamic response of the structure is measured by using bonded piezoelectric sensors. Filtered adaptive control algorithm is used to control the strain of piezoelectric actuators actively, so as to increase the modal damping coefficient of the composite panel, suppress the dynamic response and improve the fatigue performance of the structure. The feasibility of this method is verified in model experiments.