This work used the computational fluid dynamics method combined with full-scale train tests to analyze the train aerodynamic performance on special slope topography. Results show that with the increment in the slope g...This work used the computational fluid dynamics method combined with full-scale train tests to analyze the train aerodynamic performance on special slope topography. Results show that with the increment in the slope gradient, the aerodynamic forces and moment increase sharply. Compared with the flat ground condition, the lateral force, lift force, and overturning moment of the train on the first line increase by 153.2%, 53.4% and 124.7%, respectively, under the slope gradient of 20°. However, with the increment of the windward side's depth, the windbreak effect is improved obviously. When the depth is equal to 10 m, compared with the 0 m, the lateral force, lift force and overturning moment of the train on the first line decrease by 70.9%, 77.0% and 70.6%,respectively. Through analyzing the influence of slope parameters on the aerodynamic performance of the train, the relationships among them are established. All these will provide a basic reference for enhancing train aerodynamic performances under different slope conditions and achieve reasonable train speeds for the operation safety in different wind environments.展开更多
In a centrifugal compressor, the leakage flow through the tip clearance generates the tip leakage vortex by the in- teraction with the main flow, and consequently makes the flow in the impeller passage more complex by...In a centrifugal compressor, the leakage flow through the tip clearance generates the tip leakage vortex by the in- teraction with the main flow, and consequently makes the flow in the impeller passage more complex by the inte- raction with the passage vortex. In addition, the tip leakage vortex interacts with the shock wave on the suction surface near the blade tip in the transonic centrifugal compressor impeller. Therefore, the detailed examination for the influence of the tip leakage vortex becomes seriously important to improve the aerodynamic performance cs- pccia|ly for the transonic centrifugal compressor. In this study, the flows in the transonic centrifugal compressor with and without the tip clearance at the design condition were analyzed numerically by using the commercial CFD code. The computed results revealed that the tip leakage vortex induced by the high loading at the blade tip around the leading edge affected the loss generation by the reduction or the suppression of the shock wave on the suction surface of the blade.展开更多
基金Projects(U1334205,U1134203)supported by the National Natural Science Foundation of ChinaProject(132014)supported by the Fok Ying Tong Education Foundation,ChinaProjects(2014T001-A,2015T002-A,2015J007-N)supported by China Railways Corporation
文摘This work used the computational fluid dynamics method combined with full-scale train tests to analyze the train aerodynamic performance on special slope topography. Results show that with the increment in the slope gradient, the aerodynamic forces and moment increase sharply. Compared with the flat ground condition, the lateral force, lift force, and overturning moment of the train on the first line increase by 153.2%, 53.4% and 124.7%, respectively, under the slope gradient of 20°. However, with the increment of the windward side's depth, the windbreak effect is improved obviously. When the depth is equal to 10 m, compared with the 0 m, the lateral force, lift force and overturning moment of the train on the first line decrease by 70.9%, 77.0% and 70.6%,respectively. Through analyzing the influence of slope parameters on the aerodynamic performance of the train, the relationships among them are established. All these will provide a basic reference for enhancing train aerodynamic performances under different slope conditions and achieve reasonable train speeds for the operation safety in different wind environments.
文摘In a centrifugal compressor, the leakage flow through the tip clearance generates the tip leakage vortex by the in- teraction with the main flow, and consequently makes the flow in the impeller passage more complex by the inte- raction with the passage vortex. In addition, the tip leakage vortex interacts with the shock wave on the suction surface near the blade tip in the transonic centrifugal compressor impeller. Therefore, the detailed examination for the influence of the tip leakage vortex becomes seriously important to improve the aerodynamic performance cs- pccia|ly for the transonic centrifugal compressor. In this study, the flows in the transonic centrifugal compressor with and without the tip clearance at the design condition were analyzed numerically by using the commercial CFD code. The computed results revealed that the tip leakage vortex induced by the high loading at the blade tip around the leading edge affected the loss generation by the reduction or the suppression of the shock wave on the suction surface of the blade.