针对传统目标识别网络中特征局部通道信息未被充分利用的问题,本文提出了一种特征通道分组注意力机制,与残差卷积神经网络组成有效的特征提取网络。首先,对特征沿通道维度分割形成多个子特征,在子特征中关注通道的重要性并赋予权重,进...针对传统目标识别网络中特征局部通道信息未被充分利用的问题,本文提出了一种特征通道分组注意力机制,与残差卷积神经网络组成有效的特征提取网络。首先,对特征沿通道维度分割形成多个子特征,在子特征中关注通道的重要性并赋予权重,进行通道重排得到信息的子特征分组并重复加权过程,在特征整体通道上进行信息交流。随后,取子特征的平均池化特征图作为代表,进行子特征之间的信息交流,实现特征整体与局部通道信息的增强与结合。最后,为进一步提高网络的识别性能,本文以水声目标辐射噪声的低频分析与记录谱(Low Frequency Analysis And Recording,LOFAR)和Mel谱两种特征作为网络模型的输入,构建了加入自编码器实现不同特征间信息交流的特征融合网络,将输入的两种信号时频特征进行深度融合,提高特征对信号携带信息的表征能力。基于ShipsEar数据集的实验验证表明,本文所提出的改进注意力机制,相较于常用的通道注意力机制在识别准确率上提高了1.38%以上。融合两种特征进行识别相较于单独应用LOFAR和Mel谱在识别准确率上分别提高了6.17%和1.2%。展开更多
针对水声目标信号复杂、样本获取难度大且富含不确定信息的问题,研究了一种新的证据K类近邻识别算法(Evidence K Nearest Neighbor,EK-NN)。首先在水声目标的各类训练样本中,根据特征距离大小选取待识别目标的K近邻,并构造其基本置信指...针对水声目标信号复杂、样本获取难度大且富含不确定信息的问题,研究了一种新的证据K类近邻识别算法(Evidence K Nearest Neighbor,EK-NN)。首先在水声目标的各类训练样本中,根据特征距离大小选取待识别目标的K近邻,并构造其基本置信指派函数。然后使用证据理论中的Dempster-Shafer(D-S)规则对各类别下的近邻证据进行组合,最后再应用冲突置信的比例分配规则5(Redistribute Conflicting mass proportionally rule5,PCR5)将所有类别的组合证据进行融合,并根据融合结果和所设立的分类规则来判断目标的类别属性。根据水声目标实测数据,将新算法与其他几种常见的水声目标识别算法进行了对比分析,结果表明新算法能有效提高识别的准确率。展开更多
文摘针对传统目标识别网络中特征局部通道信息未被充分利用的问题,本文提出了一种特征通道分组注意力机制,与残差卷积神经网络组成有效的特征提取网络。首先,对特征沿通道维度分割形成多个子特征,在子特征中关注通道的重要性并赋予权重,进行通道重排得到信息的子特征分组并重复加权过程,在特征整体通道上进行信息交流。随后,取子特征的平均池化特征图作为代表,进行子特征之间的信息交流,实现特征整体与局部通道信息的增强与结合。最后,为进一步提高网络的识别性能,本文以水声目标辐射噪声的低频分析与记录谱(Low Frequency Analysis And Recording,LOFAR)和Mel谱两种特征作为网络模型的输入,构建了加入自编码器实现不同特征间信息交流的特征融合网络,将输入的两种信号时频特征进行深度融合,提高特征对信号携带信息的表征能力。基于ShipsEar数据集的实验验证表明,本文所提出的改进注意力机制,相较于常用的通道注意力机制在识别准确率上提高了1.38%以上。融合两种特征进行识别相较于单独应用LOFAR和Mel谱在识别准确率上分别提高了6.17%和1.2%。
文摘针对水声目标信号复杂、样本获取难度大且富含不确定信息的问题,研究了一种新的证据K类近邻识别算法(Evidence K Nearest Neighbor,EK-NN)。首先在水声目标的各类训练样本中,根据特征距离大小选取待识别目标的K近邻,并构造其基本置信指派函数。然后使用证据理论中的Dempster-Shafer(D-S)规则对各类别下的近邻证据进行组合,最后再应用冲突置信的比例分配规则5(Redistribute Conflicting mass proportionally rule5,PCR5)将所有类别的组合证据进行融合,并根据融合结果和所设立的分类规则来判断目标的类别属性。根据水声目标实测数据,将新算法与其他几种常见的水声目标识别算法进行了对比分析,结果表明新算法能有效提高识别的准确率。