We investigate theoretically the single-photon scattering by a A-type three-level system interacting with a whispering-gallery-type resonator which is coupled to a one-dimensional waveguide by full quantum-mechanical ...We investigate theoretically the single-photon scattering by a A-type three-level system interacting with a whispering-gallery-type resonator which is coupled to a one-dimensional waveguide by full quantum-mechanical approach. The single-photon transmission amplitude and reflection amplitude are obtained exactly via real-space approach. The single-photon transport properties controlling by classic optical field are discussed. The critical coupling condition in the coupled waveguide-whispering-gallery resonator-atom with three-level system is also analyzed.展开更多
A stochastic model of chemical reaction-heat conduction-diffusion for a one-dimensional gaseous system under Dirichlet or zero-fluxes boundary conditions is proposed in this paper. Based on this model,we extend the th...A stochastic model of chemical reaction-heat conduction-diffusion for a one-dimensional gaseous system under Dirichlet or zero-fluxes boundary conditions is proposed in this paper. Based on this model,we extend the theory of the broadening exponent of critical fluctuations to cover the chemical reaction-heat conduction coupling systems as an asymptotic property of the corresponding Markovian master equation (ME),and establish a valid stochastic thermodynamics for such systems. As an illustration,the non-isothermal and inhomogeneous Schl-gl model is explicitly studied. Through an order analysis of the contributions from both the drift and diffusion to the evolution of the probability distribution in the corresponding Fokker-Planck equation(FPE) in the approach to bifurcation,we have identified the critical transition rule for the broadening exponent of the fluctuations due to the coupling between chemical reaction and heat conduction. It turns out that the dissipation induced by the critical fluctuations reaches a deterministic level,leading to a thermodynamic effect on the nonequilibrium physico-chemical processes.展开更多
基金*Supported by National Natural Science Foundation of China under Grant Nos. 10874134, 11004001, and 10947115 and Anhui Province for Young Teachers Foundation under Crant No. 2010SQRL037ZD
文摘We investigate theoretically the single-photon scattering by a A-type three-level system interacting with a whispering-gallery-type resonator which is coupled to a one-dimensional waveguide by full quantum-mechanical approach. The single-photon transmission amplitude and reflection amplitude are obtained exactly via real-space approach. The single-photon transport properties controlling by classic optical field are discussed. The critical coupling condition in the coupled waveguide-whispering-gallery resonator-atom with three-level system is also analyzed.
基金supported by the National Natural Science Foundation of China (20673074 & 20973119)
文摘A stochastic model of chemical reaction-heat conduction-diffusion for a one-dimensional gaseous system under Dirichlet or zero-fluxes boundary conditions is proposed in this paper. Based on this model,we extend the theory of the broadening exponent of critical fluctuations to cover the chemical reaction-heat conduction coupling systems as an asymptotic property of the corresponding Markovian master equation (ME),and establish a valid stochastic thermodynamics for such systems. As an illustration,the non-isothermal and inhomogeneous Schl-gl model is explicitly studied. Through an order analysis of the contributions from both the drift and diffusion to the evolution of the probability distribution in the corresponding Fokker-Planck equation(FPE) in the approach to bifurcation,we have identified the critical transition rule for the broadening exponent of the fluctuations due to the coupling between chemical reaction and heat conduction. It turns out that the dissipation induced by the critical fluctuations reaches a deterministic level,leading to a thermodynamic effect on the nonequilibrium physico-chemical processes.