Due to piping vibration, fluid pulsation and other environmental disturbances, variations of amplitude and frequency to the raw signals of vortex flowmeter are imposed. It is difficult to extract vortex frequencies wh...Due to piping vibration, fluid pulsation and other environmental disturbances, variations of amplitude and frequency to the raw signals of vortex flowmeter are imposed. It is difficult to extract vortex frequencies which indicate volumetric flowrate from noisy data, especially at low flowrates. Hilbert-Huang transform was adopted to estimate vortex frequency. The noisy raw signal was decomposed into different intrinsic modes by empirical mode decomposition, the time-frequency characteristics of each mode were analyzed, and the vortex frequency was obtained by calculating partial mode’s instantaneous frequency. Experimental results show that the proposed method can estimate the vortex frequency with less than 2% relative error; and in the low flowrate range studied, the denoising ability of Hilbert-Huang transform is markedly better than Fourier based algorithms. These findings reveal that this method is accurate for vortex signal processing and at the same time has strong anti-disturbance ability.展开更多
This paper focuses on the key technologies of P2P and network traffic monitoring, research and analyze the traditional P2P flow control technology and the working principle of deployment, discuss on the straight loss ...This paper focuses on the key technologies of P2P and network traffic monitoring, research and analyze the traditional P2P flow control technology and the working principle of deployment, discuss on the straight loss and bypass interference control technology, and the reasonable combination of two kinds of technology to design straight bypass joint deployment. On basis of it, we design a new P2P traffic monitoring system. Through the design and implementation of computer network traffic monitoring system based on C/S mode to achieve automatic control, maintenance, and monitor network traffic, which is suitable for the current engineering software to monitor a network application environment. From the network users and network operator' s perspective, monitoring of network traffic is scientific, reasonable that improve network management and it has important research value.展开更多
The low flow coefficient centrifugal impeller(LFCCI)gives a relatively low efficiency and a special treatment is required for the design of this kind of impeller.This paper investigates the influences of cavity leakag...The low flow coefficient centrifugal impeller(LFCCI)gives a relatively low efficiency and a special treatment is required for the design of this kind of impeller.This paper investigates the influences of cavity leakage on the performance prediction and design of LFCCI based on Computational Fluid Dynamics(CFD)techniques.The results show that,the reduction in the effi-ciency of impeller due to the introduction of cavity leakage varies with the blade shape of impeller in a wide range since there is a strong and complex interaction of main flow and leakage flow in the LFCCI.To get a credible optimization result,the backside and foreside cavities should be considered in the CFD-based design of LFCCI.展开更多
With the rapid development of the computational fluid dynamics(CFD),a parameter-free upwind scheme capable of simulating all speeds accurately and efficiently is in high demand.To achieve this goal,we present a new up...With the rapid development of the computational fluid dynamics(CFD),a parameter-free upwind scheme capable of simulating all speeds accurately and efficiently is in high demand.To achieve this goal,we present a new upwind scheme called AUSMPWM in this paper.This scheme computes the numerical mass flux as the AUSMPW+and computes the interfacial sound speed in a different way.Also,it computes the pressure flux by limiting the dissipation if the Mach number is less than 1.Series of numerical experiments show that AUSMPWM can satisfy the following attractive properties independent of any tuning coefficient:(1)Robustness against the shock anomaly and high discontinuity’s resolution;(2)high accuracy on hypersonic heating prediction and capability to give smooth reproductions of heating profiles;(3)low dissipation at low speeds;and(4)strong grid,reconstruction scheme,and Mach number independence in low speeds’simulations.These properties suggest that AUSMPWM is promising to be widely used to accurately and efficiently simulate flows of all speeds.展开更多
基金Project(20030335058) supported by the Special Research Fund for the Doctoral Programof Higher Education of China
文摘Due to piping vibration, fluid pulsation and other environmental disturbances, variations of amplitude and frequency to the raw signals of vortex flowmeter are imposed. It is difficult to extract vortex frequencies which indicate volumetric flowrate from noisy data, especially at low flowrates. Hilbert-Huang transform was adopted to estimate vortex frequency. The noisy raw signal was decomposed into different intrinsic modes by empirical mode decomposition, the time-frequency characteristics of each mode were analyzed, and the vortex frequency was obtained by calculating partial mode’s instantaneous frequency. Experimental results show that the proposed method can estimate the vortex frequency with less than 2% relative error; and in the low flowrate range studied, the denoising ability of Hilbert-Huang transform is markedly better than Fourier based algorithms. These findings reveal that this method is accurate for vortex signal processing and at the same time has strong anti-disturbance ability.
文摘This paper focuses on the key technologies of P2P and network traffic monitoring, research and analyze the traditional P2P flow control technology and the working principle of deployment, discuss on the straight loss and bypass interference control technology, and the reasonable combination of two kinds of technology to design straight bypass joint deployment. On basis of it, we design a new P2P traffic monitoring system. Through the design and implementation of computer network traffic monitoring system based on C/S mode to achieve automatic control, maintenance, and monitor network traffic, which is suitable for the current engineering software to monitor a network application environment. From the network users and network operator' s perspective, monitoring of network traffic is scientific, reasonable that improve network management and it has important research value.
基金supported by the National Natural Science Foundation of China(Grant No.50725621)
文摘The low flow coefficient centrifugal impeller(LFCCI)gives a relatively low efficiency and a special treatment is required for the design of this kind of impeller.This paper investigates the influences of cavity leakage on the performance prediction and design of LFCCI based on Computational Fluid Dynamics(CFD)techniques.The results show that,the reduction in the effi-ciency of impeller due to the introduction of cavity leakage varies with the blade shape of impeller in a wide range since there is a strong and complex interaction of main flow and leakage flow in the LFCCI.To get a credible optimization result,the backside and foreside cavities should be considered in the CFD-based design of LFCCI.
基金supported by the National Basic Research Program of China("973"Project)(Grant No.2009CB724104)
文摘With the rapid development of the computational fluid dynamics(CFD),a parameter-free upwind scheme capable of simulating all speeds accurately and efficiently is in high demand.To achieve this goal,we present a new upwind scheme called AUSMPWM in this paper.This scheme computes the numerical mass flux as the AUSMPW+and computes the interfacial sound speed in a different way.Also,it computes the pressure flux by limiting the dissipation if the Mach number is less than 1.Series of numerical experiments show that AUSMPWM can satisfy the following attractive properties independent of any tuning coefficient:(1)Robustness against the shock anomaly and high discontinuity’s resolution;(2)high accuracy on hypersonic heating prediction and capability to give smooth reproductions of heating profiles;(3)low dissipation at low speeds;and(4)strong grid,reconstruction scheme,and Mach number independence in low speeds’simulations.These properties suggest that AUSMPWM is promising to be widely used to accurately and efficiently simulate flows of all speeds.