We present a universal way to concentrate an arbitrary N-particle less-entangled W state into a maximally entangled W state with different parity check gates.It comprises two protocols.The first protocol is based on t...We present a universal way to concentrate an arbitrary N-particle less-entangled W state into a maximally entangled W state with different parity check gates.It comprises two protocols.The first protocol is based on the linear optical elements,say the partial parity check gate and the second protocol uses the quantum nondemolition measurement to construct the complete parity check gate.Both protocols can achieve the concentration task.These protocols have several advantages.First,they can obtain a maximally entangled W state only with the help of some single photons,which greatly reduces the number of entanglement resources.Second,in the first protocol,only linear optical elements are required,which is feasible with current techniques.Third,the second protocol can be repeated to perform the concentration step and obtain a higher success probability.All these advantages make it quite useful in current quantum communication and computation applications.展开更多
This paper presents a generalized framework of stochastic modeling for particle kinetics in wall-bounded flow.We modified a reflected Brownian motion process and straightforwardly obtained a Kramers equation for parti...This paper presents a generalized framework of stochastic modeling for particle kinetics in wall-bounded flow.We modified a reflected Brownian motion process and straightforwardly obtained a Kramers equation for particle probability density function(PDF).After the wall effects were accounted for as a drift from zero in the mean displacement and suppression in the diffusivity of a particle,an analytical solution was worked out for PDF.Three distinguishable mechanisms were identified to affect the profile of particle probability distribution:external forces,turbophoresis effect,and wall-drift effect.The proposed formulation covers the Huang et al.(2009)model of a wall that produces electrostatic repulsion force and van der Waals force,as well as Monte-Carlo solutions for the Peter and Barenbrug(2002)model under a variety of relaxation times.Moreover,it successfully reproduces the two patterns of particle concentration profiles observed in experiments of sediment-laden open-channel flows.The strength of the wall-drift effect was found to be connected with the interaction frequency between particle and wall.Further exploration of the relationship among flow turbulence,particle inertia,and particle concentration is worthwhile.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.11474168and 61401222)the Qing Lan Project in Jiangsu Province+2 种基金Specialized Research Fund for the Doctoral Program of Higher Education(Grant No20113223120002)University Natural Science Research Project of Jiangsu Province(Grant No.11KJB510016)the Priority Academic Development Program of Jiangsu Higher Education Institutions,China
文摘We present a universal way to concentrate an arbitrary N-particle less-entangled W state into a maximally entangled W state with different parity check gates.It comprises two protocols.The first protocol is based on the linear optical elements,say the partial parity check gate and the second protocol uses the quantum nondemolition measurement to construct the complete parity check gate.Both protocols can achieve the concentration task.These protocols have several advantages.First,they can obtain a maximally entangled W state only with the help of some single photons,which greatly reduces the number of entanglement resources.Second,in the first protocol,only linear optical elements are required,which is feasible with current techniques.Third,the second protocol can be repeated to perform the concentration step and obtain a higher success probability.All these advantages make it quite useful in current quantum communication and computation applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.51379100 and 51039003)
文摘This paper presents a generalized framework of stochastic modeling for particle kinetics in wall-bounded flow.We modified a reflected Brownian motion process and straightforwardly obtained a Kramers equation for particle probability density function(PDF).After the wall effects were accounted for as a drift from zero in the mean displacement and suppression in the diffusivity of a particle,an analytical solution was worked out for PDF.Three distinguishable mechanisms were identified to affect the profile of particle probability distribution:external forces,turbophoresis effect,and wall-drift effect.The proposed formulation covers the Huang et al.(2009)model of a wall that produces electrostatic repulsion force and van der Waals force,as well as Monte-Carlo solutions for the Peter and Barenbrug(2002)model under a variety of relaxation times.Moreover,it successfully reproduces the two patterns of particle concentration profiles observed in experiments of sediment-laden open-channel flows.The strength of the wall-drift effect was found to be connected with the interaction frequency between particle and wall.Further exploration of the relationship among flow turbulence,particle inertia,and particle concentration is worthwhile.