期刊文献+
共找到2,455篇文章
< 1 2 123 >
每页显示 20 50 100
结合高斯噪声的回声状态网络模型及其时间序列预测性能
1
作者 王梓鉴 赵慧 +1 位作者 郑明文 李鑫 《济南大学学报(自然科学版)》 北大核心 2025年第1期129-134,142,共7页
为了模拟回声状态网络模型在时间序列预测实例中的影响因素,在回声状态网络模型的储备池层引入高斯噪声,构建结合高斯噪声的回声状态网络模型;利用公式推导分析所提模型的非线性性质;采用股票序列数据与Logistic混沌序列数据进行实验验... 为了模拟回声状态网络模型在时间序列预测实例中的影响因素,在回声状态网络模型的储备池层引入高斯噪声,构建结合高斯噪声的回声状态网络模型;利用公式推导分析所提模型的非线性性质;采用股票序列数据与Logistic混沌序列数据进行实验验证和对比分析。结果表明,本文所提模型的预测效果优于回声状态网络模型、压缩感知回声状态网络模型和反向传播神经网络模型,股票收盘价预测、Logistic混沌序列预测的平均绝对误差均最小,分别为1.33×10^(-3)、5.21×10^(-4)。 展开更多
关键词 时间序列预测 回声状态网络模型 高斯噪声 储备池层
在线阅读 下载PDF
基于BPNN的混合ARIMA时间序列数据预测模型
2
作者 徐海洋 邓文文 李彤 《信息技术与信息化》 2025年第1期102-105,共4页
传统的时间序列预测模型具有较好的稳定性和可解释性,但也存在一些问题,一方面是对于非线性时间序列的适应能力不足,另一方面是对于具有季节性变化的时间序列的适应能力不足,需要通过差分操作消除时间序列的趋势和季节性,但这种方法存... 传统的时间序列预测模型具有较好的稳定性和可解释性,但也存在一些问题,一方面是对于非线性时间序列的适应能力不足,另一方面是对于具有季节性变化的时间序列的适应能力不足,需要通过差分操作消除时间序列的趋势和季节性,但这种方法存在一定的局限性。针对以上问题,文章研究并提出了基于ARIMA/BPNN的时间序列数据混合预测模型,对数据进行短期预测,使用中国的进口总值当期值数据集来评估所提出的模型。所提出的模型联合用于线性和非线性模型,旨在捕获时间序列数据中的不同关系模式。混合预测模型能够帮助用户更好地理解市场和业务需求,从而做出更准确的决策,减少决策带来的风险和成本,提高资源利用效率。 展开更多
关键词 深度学习 卷积神经网络 时间序列数据 短期预测 预测模型
在线阅读 下载PDF
基于“STL+ARIMA”模型的电力物资需求时间序列预测
3
作者 李英龙 林咪咪 +2 位作者 倪颖婷 姚可筠 李云峰 《互联网周刊》 2025年第2期33-35,共3页
随着电力行业的快速发展,物资需求的精确预测成为提高企业运营效率和降低成本的关键因素。本文基于国网福建省电力有限公司厦门供电公司2021年至2023年的部分物资出库数据,研究了多种时间序列预测模型对电力物资需求的预测能力。本文选... 随着电力行业的快速发展,物资需求的精确预测成为提高企业运营效率和降低成本的关键因素。本文基于国网福建省电力有限公司厦门供电公司2021年至2023年的部分物资出库数据,研究了多种时间序列预测模型对电力物资需求的预测能力。本文选取了ARIMA、SARIMA、LSTM、KNN、ETS、“STL+ARIMA”等6种模型,并通过MAE(平均绝对误差)、MSE(均方误差)、R-squared(决定系数)等多项评价指标对其预测精度进行了比较。实验结果表明,“STL+ARIMA”模型在所有模型中表现最佳,能够有效捕捉数据中的季节性波动和趋势变化,预测精度远超其他模型。本文为电力企业物资需求预测提供了高效且精确的模型选择方案,有助于优化物资供应链管理,降低成本,并提升整体运营效率。 展开更多
关键词 电力物资需求 时间序列预测 “STL+ARIMA”模型 SARIMA模型 LSTM神经网络
在线阅读 下载PDF
基于时间序列模型的短时交通流预测方法
4
作者 周原 《宁夏师范大学学报》 2025年第1期73-80,共8页
为给应急交通指挥方案的制定提供可靠的参考数据,提出一个基于时间序列模型的短时交通流预测方法.首先将环形线圈感应器埋设在道路之下,采集过往车辆的交通流数据,并实施错误数据处理和缺失数据填补处理.然后利用k-means算法实现交通流... 为给应急交通指挥方案的制定提供可靠的参考数据,提出一个基于时间序列模型的短时交通流预测方法.首先将环形线圈感应器埋设在道路之下,采集过往车辆的交通流数据,并实施错误数据处理和缺失数据填补处理.然后利用k-means算法实现交通流数据聚类,计算分割阈值,完成交通流数据离散化.最后用时间序列模型中的移动平均法构建预测模型,实现短时交通流预测.结果表明,该方法降低了预测误差,预测值与实测值更为接近,因此准确性更高. 展开更多
关键词 时间序列模型 交通流数据采集 预处理 离散化 移动平均法 交通流预测
在线阅读 下载PDF
基于在线监测时间序列数据的水质预测模型研究进展
5
作者 秦艳 徐庆 +3 位作者 陈晓倩 刘振鸿 唐亦舜 高品 《东华大学学报(自然科学版)》 CAS 北大核心 2024年第3期116-122,共7页
当前地表水突发性污染事件频发,已造成严重的环境和社会影响,对环境监管部门应急处置能力建设提出了新要求和新挑战。地表水水质在线监测数据具有高频率和高时效等特点,系统论述了基于在线监测时间序列数据的水质预测模型的研究现状和进... 当前地表水突发性污染事件频发,已造成严重的环境和社会影响,对环境监管部门应急处置能力建设提出了新要求和新挑战。地表水水质在线监测数据具有高频率和高时效等特点,系统论述了基于在线监测时间序列数据的水质预测模型的研究现状和进展,包括数据软测量、预处理方法和水质预测模型等,分析了不同水质预测模型在应用过程中存在的问题,并对未来研究方向进行了展望,以期为水质预测预警和环境监管提供技术支持和方法参考。 展开更多
关键词 水质预测模型 在线监测 时间序列分析 自回归模型 人工神经网络
在线阅读 下载PDF
基于深度学习的全球平均表面温度年际信号时间序列的预测 被引量:3
6
作者 罗德杨 郑飞 陈权亮 《气候与环境研究》 CSCD 北大核心 2022年第1期94-104,共11页
利用集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)有效地分解了全球平均表面温度(Global Mean Surface Temperature,GMST)时间序列,得到其不同尺度的、不同特征的子序列(Intrinsic Mode Function,IMF)。在此基础上,... 利用集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)有效地分解了全球平均表面温度(Global Mean Surface Temperature,GMST)时间序列,得到其不同尺度的、不同特征的子序列(Intrinsic Mode Function,IMF)。在此基础上,利用在预测长期、复杂、非线性变化的时间序列上具有显著优势的滑动自回归机器学习(Autoregressive Integrated Moving Average,ARIMA)模型和长短期记忆网络(Long Short-Term Memory,LSTM)模型开展GMST年际信号预测研究。结果表明:深度学习模型LSTM能很好地拟合并预测了长程相关性强的子序列(第2~6个IMF),而代表GMST年际尺度变化的IMF1则在一定程度上受到太平洋大西洋多重气候信号的影响和调制,因此进一步将3个气候指数作为预报前兆因子加入预测模型来更准确地预测IMF1的时间演变。通过利用多套GMST数据的对比,最终选定了考虑实时ENSO信息的LSTM(ENSO)模型来提前预测年际GMST信号,并预测2020年将有较大概率会成为史上最热的年份之一。 展开更多
关键词 全球平均表面温度 年际信号时间序列预测 集合经验模态分解 长短期记忆神经网络 深度学习预测模型
在线阅读 下载PDF
低效井重复压裂产量深度时间序列预测方法综述
7
作者 贾靖 樊庆虎 +1 位作者 王李昌 李帝铨 《绿色矿山》 2025年第1期14-36,共23页
当前,我国非常规原油产量不及总产油量的2%,老区在较长时间内仍然是稳产主力。重复压裂是储层增产改造的重要技术组成,压后产量的准确预测是重复压裂目标井正确选择的关键。由于储层内部的不连续界面、孔渗异质性和关键油藏参数缺失等... 当前,我国非常规原油产量不及总产油量的2%,老区在较长时间内仍然是稳产主力。重复压裂是储层增产改造的重要技术组成,压后产量的准确预测是重复压裂目标井正确选择的关键。由于储层内部的不连续界面、孔渗异质性和关键油藏参数缺失等因素的影响,传统基于经验式或数值模拟的压后产量预测方法在老区的适用性受限,深度学习模型是一个优秀的选项。传统深度学习方法(如RNN、LSTM)存在梯度消失、长期依赖建模能力不足等局限,难以应对石油时间序列数据的高维、非平稳及噪声干扰等特性。Transformer架构凭借多头注意力机制与并行计算能力,可有效捕捉产量时间序列中的长短期依赖关系。系统回顾重复压裂技术沿革,以及深度时间序列预测模型研究进展,提出构建基于Transformer架构的低效井重复压裂产量深度时间序列预测模型,并在准噶尔盆地某油田W区块的历史产量数据上进行了案例研究。研究是构建适应老区重复压裂批量化快速精确选井的理论及方法体系的创新尝试,力求为老区持续稳产提供全新视角与解决方案。展望未来研究方向:一是针对计算成本控制,建议优化经典Transformer架构的注意力模块、配合时间序列分解技术,实现低算力成本的重复压裂产量预测;二是针对多区块协同选井,建议.引入领域自适应理论,从对抗领域自适应或伪标签领域自适应入手,开发具备迁移学习能力的Transformer骨干架构。 展开更多
关键词 重复压裂井 产量预测 深度时间序列预测模型 循环神经网络 Transformer架构
在线阅读 下载PDF
基于时间序列的改进型永磁同步电机三矢量无模型预测电流控制策略
8
作者 肖强晖 张雨爽 +1 位作者 罗朝旭 程谆 《湖南电力》 2024年第5期29-36,共8页
针对永磁同步电机驱动系统传统的三矢量模型预测电流控制策略参数鲁棒性差的问题,提出一种基于时间序列的改进型三矢量无模型预测电流控制策略,以消除参数失配的影响,提高系统的鲁棒性。首先,建立时间序列数据驱动模型,将输入输出数据... 针对永磁同步电机驱动系统传统的三矢量模型预测电流控制策略参数鲁棒性差的问题,提出一种基于时间序列的改进型三矢量无模型预测电流控制策略,以消除参数失配的影响,提高系统的鲁棒性。首先,建立时间序列数据驱动模型,将输入输出数据拟合为离散传递函数,并结合递归最小二乘法在线估计模型待定系数,预测所需变量。此外,对矢量扇区进行重新分类,以优化三矢量组合的选择过程。引入矢量占空比直接计算方法,抑制电机参数入口对占空比计算环节的不确定性影响,进一步提高系统的鲁棒性。最后,仿真和实验结果表明,所提出的策略能有效提高模型参数的鲁棒性,dq轴电流纹波减小,电机参数变化引起的干扰得到有效抑制。 展开更多
关键词 永磁同步电机 模型预测控制 模型 时间序列 三矢量
在线阅读 下载PDF
基于CEEMDAN和改进的混合时间序列模型工作面涌水量预测研究 被引量:1
9
作者 丁莹莹 尹尚先 +4 位作者 连会青 卜昌森 刘伟 夏向学 周旺 《中国安全生产科学技术》 CAS CSCD 北大核心 2024年第3期110-117,共8页
为提高采煤工作面涌水量预测准确度,收集大量工作面涌水量观测数据进行整理、统计、分析,将涌水量稳定性、周期性和季节性特征考虑在内,提出1种基于数据驱动的完全自适应模态分解算法(CEEMDAN)和改进的混合时间序列模型工作面涌水量预... 为提高采煤工作面涌水量预测准确度,收集大量工作面涌水量观测数据进行整理、统计、分析,将涌水量稳定性、周期性和季节性特征考虑在内,提出1种基于数据驱动的完全自适应模态分解算法(CEEMDAN)和改进的混合时间序列模型工作面涌水量预测方法。该方法利用CEEMDAN处理涌水量数据,构建麻雀搜索算法(SSA)优化的长短期记忆网络(LSTM)和自回归移动平均模型(ARIMA)并行级联而成的混合时间序列模型对工作面涌水量进行预测。研究结果表明:该模型预测结果与真实数据相差更小,平均绝对误差为6.36 m 3/h,均方根误差为10.6 m 3/h,模型拟合系数为0.95,更适用于工作面涌水量预测。研究结果可为矿井工作面涌水量预测及防控提供参考。 展开更多
关键词 涌水量预测 时间序列预测 混合模型 经验模态分解 麻雀搜索算法
在线阅读 下载PDF
基于LightGBM-Informer的盾构隧道管片上浮长时间序列预测模型 被引量:1
10
作者 真嘉捷 赖丰文 +2 位作者 黄明 李爽 许凯 《岩土力学》 EI CAS CSCD 北大核心 2024年第12期3791-3801,共11页
基于机器学习预测施工期盾构刀盘前方管片上浮值,有助于及时调整盾构控制参数以缓解管片上浮病害。然而,已有模型在长时间序列预测问题上的性能不佳,难以精确预测盾构刀盘前方多环管片上浮值。通过考虑盾构控制、姿态参数及地层信息的影... 基于机器学习预测施工期盾构刀盘前方管片上浮值,有助于及时调整盾构控制参数以缓解管片上浮病害。然而,已有模型在长时间序列预测问题上的性能不佳,难以精确预测盾构刀盘前方多环管片上浮值。通过考虑盾构控制、姿态参数及地层信息的影响,结合Boruta算法,确定模型输入特征;利用小波变换滤波器、完备自适应噪声集合经验模态分解(complete ensemble empirical mode decomposition with adaptive noise,CEEMDAN)方法消除时间序列数据噪声,构建了一种基于LightBGM-Informer的盾构隧道施工期管片上浮预测模型。通过南京和厦门地区某地铁盾构隧道监测数据,验证了所提模型的准确性和适用性。结果表明,所提模型预测精度较循环神经网络(recurrent neural network,RNN)、长短时记忆网络(long short-term memory,LSTM)、门控循环单元(gated recurrent unit,GRU)、Transformer等模型有所提升,且在地质条件不同的数据集上具有良好的泛化性;随着预测序列长度的增加,该模型的性能优势更突出,可准确预测盾构刀盘前方1~2环未施工管片的上浮值。基于沙普利加和解释(Shapley additive explanations,SHAP)方法的特征重要性分析指出,土舱压力及盾头、盾尾垂直位移对管片上浮影响显著。所提模型可为复杂环境下富水地层盾构隧道管片施工智能化控制提供理论指导。 展开更多
关键词 盾构隧道 管片上浮 时间序列预测问题 Informer模型 SHAP方法
在线阅读 下载PDF
SARIMA与Prophet的混合算法在时间序列预测中的应用研究
11
作者 李长生 《软件》 2025年第1期7-9,共3页
本研究提出了一种基于SARIMA与Prophet模型的混合算法,以提升时间序列预测的精度。SARIMA模型擅长处理线性趋势和季节性变化,Prophet模型则适用于捕捉非线性趋势和异常波动。将两者结合后的混合算法能够更全面地对复杂数据进行预测。在... 本研究提出了一种基于SARIMA与Prophet模型的混合算法,以提升时间序列预测的精度。SARIMA模型擅长处理线性趋势和季节性变化,Prophet模型则适用于捕捉非线性趋势和异常波动。将两者结合后的混合算法能够更全面地对复杂数据进行预测。在零售、气象和金融市场等行业中的实验结果表明,混合算法在预测准确性上优于单一模型,误差率降低了15%以上。本文进一步探讨了混合算法的设计、优化和实际应用,为未来时间序列预测提供了新的思路和方法。 展开更多
关键词 时间序列预测 SARIMA模型 Prophet模型 混合算法 预测准确性
在线阅读 下载PDF
基于时间序列神经分层插值模型的光伏功率超短期多步预测 被引量:2
12
作者 李楠 刘佳佳 +3 位作者 赖心怡 杨志远 王泽亮 文福拴 《智慧电力》 北大核心 2024年第4期69-77,共9页
针对光伏功率预测准确性受数据质量和外部变量影响的问题,提出一种结合外生变量分析、数据质量控制以及时间序列神经分层插值(N-HiTS)模型的光伏功率超短期多步预测方法。首先,提出用于筛选外生变量的综合相关性度量(ICM)指标,并采用K近... 针对光伏功率预测准确性受数据质量和外部变量影响的问题,提出一种结合外生变量分析、数据质量控制以及时间序列神经分层插值(N-HiTS)模型的光伏功率超短期多步预测方法。首先,提出用于筛选外生变量的综合相关性度量(ICM)指标,并采用K近邻(KNN)算法与线性插值策略处理数据缺失问题。然后,引入N-HiTS长时间序列预测模型,通过多尺度信号采样和分层插值提高模型对长时间序列数据的处理能力。最后,通过算例对所提方法与传统光伏功率预测方法进行对比分析,验证了所提方法的预测准确性。 展开更多
关键词 光伏功率预测 时间序列神经分层插值模型(N-HiTS) 综合相关性度量(ICM) K近邻(KNN) 线性插值
在线阅读 下载PDF
基于时间序列和多元模型的集约化猪舍温度预测 被引量:10
13
作者 曾志雄 罗毅智 +3 位作者 余乔东 蔡任 吕恩利 夏晶晶 《华南农业大学学报》 CAS CSCD 北大核心 2021年第3期111-118,共8页
【目的】从挖掘猪舍历史环境参数数据时序信息角度出发,提出基于时间序列模型和多元模型序列的猪舍温度预测模型。【方法】采取缺失部分环境因子统计预测,评估猪舍环境中相对湿度、二氧化碳浓度、氧气浓度等环境因子对温度预测的影响程... 【目的】从挖掘猪舍历史环境参数数据时序信息角度出发,提出基于时间序列模型和多元模型序列的猪舍温度预测模型。【方法】采取缺失部分环境因子统计预测,评估猪舍环境中相对湿度、二氧化碳浓度、氧气浓度等环境因子对温度预测的影响程度。针对猪舍温度时间序列进行数据预处理,滤除错误值和缺失值,采用时间序列模型构建基于门控循环单元网络(Gated recurrent unit,GRU)的猪舍温度预测模型,采用多元模型建立基于梯度提升决策树(Extreme gradient boosting,XGBoost)缺失值重要程度的猪舍温度预测模型。将该预测模型用于预测广东省某集约化猪场母猪分娩舍温度,并与循环神经网络(Recurrent neural network, RNN)模型、反向神经网络(Back propagation neural network, BPNN)模型进行对比试验。【结果】对比温度预测值与实测值发现,基于GRU模型对应的猪舍温度均方根误差和平均绝对误差分别为0.25和0.19℃,平均绝对百分比误差为0.65%;基于XGBoost多元模型的猪舍温度均方根误差和平均绝对误差分别为1.21和0.71℃,平均绝对百分比误差为2.50%。在时间序列的温度预测模型中,GRU模型表现出更优的预测效果;在多元模型的温度预测中,XGBoost模型的预测效果更优。【结论】本研究使用的GRU模型在时间维度上对母猪分娩舍温度的变化起到了预警作用,确定了各种环境参数对温度的影响程度,为养殖环境的精细调控提供了参考。 展开更多
关键词 分娩舍 温度预测 时间序列模型 多元特征模型 特征重要性
在线阅读 下载PDF
基于EMD的BP神经网络海水温度时间序列预测研究 被引量:5
14
作者 卢晓亭 孙勇 +1 位作者 笪良龙 徐国军 《海洋技术》 北大核心 2009年第3期79-82,共4页
为提高非线性和非平稳海水温度时间序列的预测能力,提出了一种基于经验模态分解(Empirical Mode De-composition,简称EMD)的BP神经网络预测方法。该方法首先对原始序列进行经验模态分解,将其分解为多个平稳性得到很大改善的本征模态函数... 为提高非线性和非平稳海水温度时间序列的预测能力,提出了一种基于经验模态分解(Empirical Mode De-composition,简称EMD)的BP神经网络预测方法。该方法首先对原始序列进行经验模态分解,将其分解为多个平稳性得到很大改善的本征模态函数(Intrinsic Mode Function,简称IMF)之和,然后对每个本征模态函数进行预测,最后再根据EMD方法的完备性把预测结果相加得出原始序列的预测结果。预测试验结果表明,基于EMD的BP神经网络预测的精度比单纯用BP神经网络预测有很大提高。 展开更多
关键词 经验模态分解 BP神经网络 海水温度时间序列预测 非平稳性序列
在线阅读 下载PDF
计及温度影响的短期负荷预测时间序列模型 被引量:6
15
作者 万志宏 陈亮 文福拴 《华北电力大学学报(自然科学版)》 CAS 北大核心 2011年第3期61-66,共6页
时间序列模型在国际和国内的短期电力负荷预测中得到了广泛应用。然而,这种方法的一个主要缺点是无法将影响负荷预测的主要因素之一即气象因素考虑进去。在此背景下,首先基于负荷和气温数据建立了负荷预测的回归模型,然后构造了回归模... 时间序列模型在国际和国内的短期电力负荷预测中得到了广泛应用。然而,这种方法的一个主要缺点是无法将影响负荷预测的主要因素之一即气象因素考虑进去。在此背景下,首先基于负荷和气温数据建立了负荷预测的回归模型,然后构造了回归模型残差累积式自回归—滑动平均模型并对回归模型进行修正。最后,用广东电力系统的实际负荷数据说明了所发展的短期负荷预测模型的实际预测效果。计算结果表明所提出的方法可以弥补现有时间序列模型的缺点,有效地提高负荷预测精度。 展开更多
关键词 短期负荷预测 回归模型 时间序列模型 累积式自回归—滑动平均模型
在线阅读 下载PDF
基于时间序列AR(P)模型的边坡变形预测与应用 被引量:1
16
作者 陈子江 《测绘与空间地理信息》 2024年第7期203-206,214,共5页
获取边坡的监测数据进行分析,并预测其接下来的变化趋势,具有重要的意义。本文以贵州省福泉市高坪矿区英坪矿段内边坡工程项目为研究对象,对监测数据采用时间序列AR(P)模型方法进行了分析与预测。研究结果表明,模型拟合的结果和预测精... 获取边坡的监测数据进行分析,并预测其接下来的变化趋势,具有重要的意义。本文以贵州省福泉市高坪矿区英坪矿段内边坡工程项目为研究对象,对监测数据采用时间序列AR(P)模型方法进行了分析与预测。研究结果表明,模型拟合的结果和预测精度较好地反映了监测点的变化趋势,可为矿区边坡模型建立和监测数据的预测提供一定的参考。 展开更多
关键词 矿区边坡 变形监测 时间序列AR(P)模型 预测
在线阅读 下载PDF
A^(2)former模型在时间序列预测中的应用研究
17
作者 胡倩伟 王秀青 +2 位作者 安阳 张诺飞 王广超 《人工智能科学与工程》 CAS 北大核心 2024年第1期41-50,共10页
时间序列预测在金融、医疗、交通和气象等领域发挥着重要作用。在长时间序列预测中,迫切需要提高预测的精度,解决内存不足等问题。近年来,Transformer模型在自然语言处理领域得以成功应用的同时,在预测研究领域也引起了学者们的广泛关注... 时间序列预测在金融、医疗、交通和气象等领域发挥着重要作用。在长时间序列预测中,迫切需要提高预测的精度,解决内存不足等问题。近年来,Transformer模型在自然语言处理领域得以成功应用的同时,在预测研究领域也引起了学者们的广泛关注,Transformer变体Informer模型的研究在时间序列预测中取得了较大进展。本研究以Informer框架为基础,与加性注意力机制相结合,提出了A^(2)former模型。利用A^(2)former模型在ETT,WTH,ECL和PM2.5数据集上进行了长时间序列预测的实验,实验结果表明所提模型在长时间序列预测中表现出比基线方法(如Informer模型和LSTMa模型)更好的性能。A^(2)former模型不仅将计算时间复杂度降低到线性,而且可以实现更有效的序列建模。本研究的工作为时间序列预测提供了有益参考。 展开更多
关键词 时间序列预测 加性注意力机制 Transformer模型 Informer模型 深度学习
在线阅读 下载PDF
基于时间序列模型的北京市院前急救出车车次预测分析
18
作者 邓贵芳 孙涛 +2 位作者 耿聆 巴衣尔策策克 陈辉 《中国急救复苏与灾害医学杂志》 2024年第5期587-590,共4页
目的研究分析北京市院前急救出车车次,预测未来时间内的出车车次,以期为北京市院前急救建设及发展提供参考。方法采用描述性统计方学法分析北京市2018年—2022年院前急救出车车次基本情况;使用SPSS 26.0统计软件建立时间序列模型,运用... 目的研究分析北京市院前急救出车车次,预测未来时间内的出车车次,以期为北京市院前急救建设及发展提供参考。方法采用描述性统计方学法分析北京市2018年—2022年院前急救出车车次基本情况;使用SPSS 26.0统计软件建立时间序列模型,运用“专家建模器”自动选择最优模型,对北京市2023年院前急救出车车次进行预测。结果北京市2018年—2022年院前急救出车车次逐年上升,2022年出车车次是2018年出车车次近2倍,每年出车车次最高、最低月份分别为12月、2月;时间序列模型自动选择最优模型为“温特斯加型”,模型拟合度R方为0.896,平稳R方为0.377,杨-博克斯Q(18)统计量的显著性P值为0.642,数据拟合效果良好;预测值与实际值平均绝对百分比误差(MAPE)为6.85%,模型的预测能力“优良”;较好预测了2023年院前急救出车车次。结论北京市院前急救出车车次呈逐年上升趋势,院前急救公共卫生服务能力有效提升;时间序列模型较好地拟合北京市院前急救出车车次变化趋势并进行预测,助力适时调配院前急救服务资源;推进北京市院前急救供给侧改革完善,赋予院前急救服务体系更高韧性。 展开更多
关键词 院前急救 时间序列模型 预测价值
在线阅读 下载PDF
一种基于信息熵的LSTM时间序列数据预测模型 被引量:4
19
作者 田园 孙梦觉 +1 位作者 周植高 范培忠 《科技创新与应用》 2024年第7期28-34,共7页
时间序列预测可提升智能电网决策能耗评估有效性和电力传感网络的故障检测效率。基于香农信息熵和长短时记忆网络,构建一种基于时间序列数据的趋势预测模型,模型算法首先对时间序列数据以熵值法处理后进行特征归并,建立特征区间和熵值模... 时间序列预测可提升智能电网决策能耗评估有效性和电力传感网络的故障检测效率。基于香农信息熵和长短时记忆网络,构建一种基于时间序列数据的趋势预测模型,模型算法首先对时间序列数据以熵值法处理后进行特征归并,建立特征区间和熵值模型;其次在特征区间建立的基础上,将分类过后的数据在长短时记忆网络中进行训练得到预测结果。最后实验结果表明,与传统LSTM和GRU模型相比,高熵模型的均值平方差函数迭代结果误差降低85.9%和85.29%,显著改善模型预测结果的可靠性和准确性。 展开更多
关键词 智能电网 时间序列 信息熵 长短期记忆神经网络 预测模型
在线阅读 下载PDF
基于Conv1D-LSTM混合模型的长时间序列日最高温预测研究
20
作者 杜智勇 杨帆 杨文杰 《北京印刷学院学报》 2024年第9期52-57,共6页
针对传统方法难以处理高维度数据捕捉气温数据中的非线性模式和复杂动态特征的问题,本文提出一种基于卷积神经网络(Conv1D)与长短期记忆网络(LSTM)相结合的混合模型,用于长时间序列高温预测研究。数据集包含北京市2014年至2023年间的气... 针对传统方法难以处理高维度数据捕捉气温数据中的非线性模式和复杂动态特征的问题,本文提出一种基于卷积神经网络(Conv1D)与长短期记忆网络(LSTM)相结合的混合模型,用于长时间序列高温预测研究。数据集包含北京市2014年至2023年间的气象数据,包括天气、日最低温、日最高温、风向等特征。通过特征工程处理,将天气和风向特征编码,并对温度特征归一化。构建的Conv1D-LSTM混合模型创新性地融合Conv1D以捕获时间序列中的局部特征,融合LSTM以学习长期依赖关系。与传统模型相比,该混合模型的均方根误差(RMSE)和平均绝对误差(MAE)分别降低约17.3%和20.5%,同时R2分数提高约1.06%,表明该模型具有更高的预测精度和泛化能力。 展开更多
关键词 日最高温预测 Conv1D-LSTM混合模型 时间序列 预测精度
在线阅读 下载PDF
上一页 1 2 123 下一页 到第
使用帮助 返回顶部