地浸采铀作为铀矿的绿色开采技术,在生产运行中产生海量数据,利用这些海量数据进行大数据分析和趋势预测,能够提升技术人员制定生产计划的可靠性。目前采用的基于编码器-解码器结构的时序预测模型,由于存在注意力机制,导致计算复杂、内...地浸采铀作为铀矿的绿色开采技术,在生产运行中产生海量数据,利用这些海量数据进行大数据分析和趋势预测,能够提升技术人员制定生产计划的可靠性。目前采用的基于编码器-解码器结构的时序预测模型,由于存在注意力机制,导致计算复杂、内存消耗大。本研究提出深度可分离卷积混合模型,通过动态序列分割模块降低固定分割带来的语义破坏,通过深度可分离卷积混合模块降低模型运行时间并捕获局部和全局特征。结果表明,深度可分离卷积混合网络模型的均方误差(Mean Square Error,MSE)与平均绝对误差(Mean Absolute Error,MAE)相较于时间序列分块自注意力模型(Patch Time Series Transformer,PatchTST)分别降低了1.04%和4.13%,提出的动态序列分割模块的MSE与MAE相较于原有模型分别降低了7.32%和5.03%;在性能对比分析上,深度可分离卷积混合模型的训练速度相较于趋势季节分解线性模型(Decomposition Linear,DLinear)提高了59.91%。建立的模型能够准确预测采区生产运行中硫酸注液量的变化趋势,改善了现有预测模型针对地浸铀矿数据集存在的运行时间长、运行内存大、数据拟合差的问题,可为地浸铀矿生产决策提供理论和实践参考。展开更多
水面污染严重影响水面景观和水体生态.针对识别水面污染过程中水面场景复杂、小目标污染物特征难以提取等问题,本文提出一种基于深度可分离卷积与交叉注意力算法模块(deep-wise convolution and cross attention,DCCA).使用深度可分离...水面污染严重影响水面景观和水体生态.针对识别水面污染过程中水面场景复杂、小目标污染物特征难以提取等问题,本文提出一种基于深度可分离卷积与交叉注意力算法模块(deep-wise convolution and cross attention,DCCA).使用深度可分离卷积降低模型的参数量和计算量,使用交叉注意力建立不同尺度特征图之间的关系,使模型更好地理解上下文信息并提高识别复杂场景和小目标的能力.实验结果表明,添加DCCA模块后平均精确率提升了1.8%,达到了88.7%.并使用较少的显存占用提高了水面污染的检测效果.展开更多
文摘地浸采铀作为铀矿的绿色开采技术,在生产运行中产生海量数据,利用这些海量数据进行大数据分析和趋势预测,能够提升技术人员制定生产计划的可靠性。目前采用的基于编码器-解码器结构的时序预测模型,由于存在注意力机制,导致计算复杂、内存消耗大。本研究提出深度可分离卷积混合模型,通过动态序列分割模块降低固定分割带来的语义破坏,通过深度可分离卷积混合模块降低模型运行时间并捕获局部和全局特征。结果表明,深度可分离卷积混合网络模型的均方误差(Mean Square Error,MSE)与平均绝对误差(Mean Absolute Error,MAE)相较于时间序列分块自注意力模型(Patch Time Series Transformer,PatchTST)分别降低了1.04%和4.13%,提出的动态序列分割模块的MSE与MAE相较于原有模型分别降低了7.32%和5.03%;在性能对比分析上,深度可分离卷积混合模型的训练速度相较于趋势季节分解线性模型(Decomposition Linear,DLinear)提高了59.91%。建立的模型能够准确预测采区生产运行中硫酸注液量的变化趋势,改善了现有预测模型针对地浸铀矿数据集存在的运行时间长、运行内存大、数据拟合差的问题,可为地浸铀矿生产决策提供理论和实践参考。
文摘水面污染严重影响水面景观和水体生态.针对识别水面污染过程中水面场景复杂、小目标污染物特征难以提取等问题,本文提出一种基于深度可分离卷积与交叉注意力算法模块(deep-wise convolution and cross attention,DCCA).使用深度可分离卷积降低模型的参数量和计算量,使用交叉注意力建立不同尺度特征图之间的关系,使模型更好地理解上下文信息并提高识别复杂场景和小目标的能力.实验结果表明,添加DCCA模块后平均精确率提升了1.8%,达到了88.7%.并使用较少的显存占用提高了水面污染的检测效果.