深度强化学习利用深度学习感知环境信息,使用强化学习求解最优决策,是当前人工智能领域的主要研究热点之一.然而,大部分深度强化学习的工作未考虑安全问题,有些方法甚至特意加入带随机性质的探索来扩展采样的覆盖面,以期望获得更好的近...深度强化学习利用深度学习感知环境信息,使用强化学习求解最优决策,是当前人工智能领域的主要研究热点之一.然而,大部分深度强化学习的工作未考虑安全问题,有些方法甚至特意加入带随机性质的探索来扩展采样的覆盖面,以期望获得更好的近似最优解.可是,不受安全控制的探索性学习很可能会带来重大风险.针对上述问题,提出了一种基于双深度网络的安全深度强化学习(Dual Deep Network Based Secure Deep Reinforcement Learning,DDN-SDRL)方法.DDN-SDRL方法设计了危险样本经验池和安全样本经验池,其中危险样本经验池用于记录探索失败时的临界状态和危险状态的样本,而安全样本经验池用于记录剔除了临界状态和危险状态的样本.DDN-SDRL方法在原始网络模型上增加了一个深度Q网络来训练危险样本,将高维输入编码为抽象表示后再解码为特征;同时提出了惩罚项描述临界状态,并使用原始网络目标函数和惩罚项计算目标函数.DDN-SDRL方法以危险样本经验池中的样本为输入,使用深度Q网络训练得到惩罚项.由于DDN-SDRL方法利用了临界状态、危险状态及安全状态信息,因此Agent可以通过避开危险状态的样本、优先选取安全状态的样本来提高安全性.DDN-SDRL方法具有通用性,能与多种深度网络模型结合.实验验证了方法的有效性.展开更多
基于深度神经网络的目标检测技术已经广泛应用于各领域,然而,通过对抗补丁攻击在图像中添加局部扰动,以此来误导深度神经网络,对基于目标检测技术的视觉系统构成了严重威胁。针对这一问题,利用对抗补丁和图像背景的语义差异性,提出了一...基于深度神经网络的目标检测技术已经广泛应用于各领域,然而,通过对抗补丁攻击在图像中添加局部扰动,以此来误导深度神经网络,对基于目标检测技术的视觉系统构成了严重威胁。针对这一问题,利用对抗补丁和图像背景的语义差异性,提出了一种基于PatchTracker的对抗补丁防御算法,该算法由上游补丁检测器与下游数据增强模块组成。上游补丁检测器使用带有注意力机制的YOLOV5(you only look once-v5)确定对抗补丁所在位置,有助于提高对小尺度对抗补丁的检测精度;将检测区域用合适的像素值覆盖以抹除对抗补丁,上游补丁检测器不仅能够有效降低对抗样本的攻击性,而且不依赖大规模的训练数据;下游数据增强模块通过改进模型训练范式,提高下游目标检测器的鲁棒性;将抹除补丁后的图像输入经过数据增强的下游YOLOV5目标检测模型。在公开的TT100K交通标志数据集上进行了交叉验证,实验表明,与未采取防御措施相比,所提算法能够有效防御多种类型的通用对抗补丁攻击,在检测对抗补丁图像时的mAP(mean average precision)提高65%左右,有效地改善了小尺度对抗补丁的漏检情况。与现有算法比较,所提算法有效提高了神经网络在检测对抗样本时的准确率。此外,所提算法不涉及下游模型结构的修改,具有良好的兼容性。展开更多
Safety is the cornerstone of the civil aviation industry and the enduring focus of civil aviation.This paper uses air traffic complexity and potential aircraft conflict relationships as entry points to study the opera...Safety is the cornerstone of the civil aviation industry and the enduring focus of civil aviation.This paper uses air traffic complexity and potential aircraft conflict relationships as entry points to study the operational safety level of terminal area flight flows and proposes a deep learning-based method for safety situation awareness in terminal area aircraft operations.Firstly,a more comprehensive and precise safety situation assessment features are constructed.Secondly,a deep clustering situation recognition model with added safety situation information capture layer is proposed.Finally,a spatiotemporal graph convolutional neural network based on attention mechanism is constructed for predicting safety situations.Experimental results from a real dataset show that:(1)The proposed model surpasses traditional models across all evaluated dimensions;(2)the recognition model ensures that the encoded features capture distinctive safety situation information,thereby enhancing model interpretability and task alignment;(3)the prediction model demonstrates superior integrated modeling capabilities in both spatial and temporal dimensions.Ultimately,this paper elucidates the spatiotemporal evolution characteristics of air traffic safety situation levels,offering valuable insights for air traffic safety management.展开更多
文摘深度强化学习利用深度学习感知环境信息,使用强化学习求解最优决策,是当前人工智能领域的主要研究热点之一.然而,大部分深度强化学习的工作未考虑安全问题,有些方法甚至特意加入带随机性质的探索来扩展采样的覆盖面,以期望获得更好的近似最优解.可是,不受安全控制的探索性学习很可能会带来重大风险.针对上述问题,提出了一种基于双深度网络的安全深度强化学习(Dual Deep Network Based Secure Deep Reinforcement Learning,DDN-SDRL)方法.DDN-SDRL方法设计了危险样本经验池和安全样本经验池,其中危险样本经验池用于记录探索失败时的临界状态和危险状态的样本,而安全样本经验池用于记录剔除了临界状态和危险状态的样本.DDN-SDRL方法在原始网络模型上增加了一个深度Q网络来训练危险样本,将高维输入编码为抽象表示后再解码为特征;同时提出了惩罚项描述临界状态,并使用原始网络目标函数和惩罚项计算目标函数.DDN-SDRL方法以危险样本经验池中的样本为输入,使用深度Q网络训练得到惩罚项.由于DDN-SDRL方法利用了临界状态、危险状态及安全状态信息,因此Agent可以通过避开危险状态的样本、优先选取安全状态的样本来提高安全性.DDN-SDRL方法具有通用性,能与多种深度网络模型结合.实验验证了方法的有效性.
文摘基于深度神经网络的目标检测技术已经广泛应用于各领域,然而,通过对抗补丁攻击在图像中添加局部扰动,以此来误导深度神经网络,对基于目标检测技术的视觉系统构成了严重威胁。针对这一问题,利用对抗补丁和图像背景的语义差异性,提出了一种基于PatchTracker的对抗补丁防御算法,该算法由上游补丁检测器与下游数据增强模块组成。上游补丁检测器使用带有注意力机制的YOLOV5(you only look once-v5)确定对抗补丁所在位置,有助于提高对小尺度对抗补丁的检测精度;将检测区域用合适的像素值覆盖以抹除对抗补丁,上游补丁检测器不仅能够有效降低对抗样本的攻击性,而且不依赖大规模的训练数据;下游数据增强模块通过改进模型训练范式,提高下游目标检测器的鲁棒性;将抹除补丁后的图像输入经过数据增强的下游YOLOV5目标检测模型。在公开的TT100K交通标志数据集上进行了交叉验证,实验表明,与未采取防御措施相比,所提算法能够有效防御多种类型的通用对抗补丁攻击,在检测对抗补丁图像时的mAP(mean average precision)提高65%左右,有效地改善了小尺度对抗补丁的漏检情况。与现有算法比较,所提算法有效提高了神经网络在检测对抗样本时的准确率。此外,所提算法不涉及下游模型结构的修改,具有良好的兼容性。
基金supported by the Chi‑nese Special Research Project for Civil Aircraft(No.MJZ1-7N22)the National Natural Science Foundation of Chi‑na(No.U2133207).
文摘Safety is the cornerstone of the civil aviation industry and the enduring focus of civil aviation.This paper uses air traffic complexity and potential aircraft conflict relationships as entry points to study the operational safety level of terminal area flight flows and proposes a deep learning-based method for safety situation awareness in terminal area aircraft operations.Firstly,a more comprehensive and precise safety situation assessment features are constructed.Secondly,a deep clustering situation recognition model with added safety situation information capture layer is proposed.Finally,a spatiotemporal graph convolutional neural network based on attention mechanism is constructed for predicting safety situations.Experimental results from a real dataset show that:(1)The proposed model surpasses traditional models across all evaluated dimensions;(2)the recognition model ensures that the encoded features capture distinctive safety situation information,thereby enhancing model interpretability and task alignment;(3)the prediction model demonstrates superior integrated modeling capabilities in both spatial and temporal dimensions.Ultimately,this paper elucidates the spatiotemporal evolution characteristics of air traffic safety situation levels,offering valuable insights for air traffic safety management.