期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于行为识别的课堂深度学习成绩预测模型研究 被引量:1
1
作者 胡富珍 王晓东 卜彩丽 《中国教育信息化》 2023年第9期108-118,共11页
课堂学习行为智能识别和大数据分析为课堂高阶认知评价带来契机。利用数据技术挖掘学生课堂学习行为对深度学习成绩的影响关系,解决识别与评价课堂高阶认知不足的现实问题。以英语和化学两门学科为例,以课堂学习行为为自变量,以测试试... 课堂学习行为智能识别和大数据分析为课堂高阶认知评价带来契机。利用数据技术挖掘学生课堂学习行为对深度学习成绩的影响关系,解决识别与评价课堂高阶认知不足的现实问题。以英语和化学两门学科为例,以课堂学习行为为自变量,以测试试卷深度学习成绩为因变量,通过高斯消元、回代总样本求均方差最优解等算法,分析出课堂“听讲”“阅读”等8种课堂行为对深度学习成绩的权重影响,构建课堂学习行为与深度学习成绩间的预测模型,依据模型可识别和评价学生的高阶认知是否发生,为常态课堂高阶认知规模化评价提供科学依据和技术支撑。 展开更多
关键词 行为识别 深度学习 深度学习成绩预测模型 过程性评价
在线阅读 下载PDF
基于深度学习的全球平均表面温度年际信号时间序列的预测 被引量:3
2
作者 罗德杨 郑飞 陈权亮 《气候与环境研究》 CSCD 北大核心 2022年第1期94-104,共11页
利用集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)有效地分解了全球平均表面温度(Global Mean Surface Temperature,GMST)时间序列,得到其不同尺度的、不同特征的子序列(Intrinsic Mode Function,IMF)。在此基础上,... 利用集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)有效地分解了全球平均表面温度(Global Mean Surface Temperature,GMST)时间序列,得到其不同尺度的、不同特征的子序列(Intrinsic Mode Function,IMF)。在此基础上,利用在预测长期、复杂、非线性变化的时间序列上具有显著优势的滑动自回归机器学习(Autoregressive Integrated Moving Average,ARIMA)模型和长短期记忆网络(Long Short-Term Memory,LSTM)模型开展GMST年际信号预测研究。结果表明:深度学习模型LSTM能很好地拟合并预测了长程相关性强的子序列(第2~6个IMF),而代表GMST年际尺度变化的IMF1则在一定程度上受到太平洋大西洋多重气候信号的影响和调制,因此进一步将3个气候指数作为预报前兆因子加入预测模型来更准确地预测IMF1的时间演变。通过利用多套GMST数据的对比,最终选定了考虑实时ENSO信息的LSTM(ENSO)模型来提前预测年际GMST信号,并预测2020年将有较大概率会成为史上最热的年份之一。 展开更多
关键词 全球平均表面温度 年际信号时间序列预测 集合经验模态分解 长短期记忆神经网络 深度学习预测模型
在线阅读 下载PDF
东北三省粮食需求量预测与未来黑土地耕地质量提升思考
3
作者 邸佳颖 王盛威 +4 位作者 刘红芳 付海美 熊露 庄家煜 张淑香 《农业展望》 2024年第8期132-138,共7页
明确东北三省未来粮食需求走势,对保障国家粮食安全、保护利用东北黑土地资源具有重要指导意义。从国家粮食供需平衡角度,综合考虑宏观经济条件和农业生产条件,预测分析2023-2032年黑龙江、吉林、辽宁3个省份的粮食需求量可以为量化保... 明确东北三省未来粮食需求走势,对保障国家粮食安全、保护利用东北黑土地资源具有重要指导意义。从国家粮食供需平衡角度,综合考虑宏观经济条件和农业生产条件,预测分析2023-2032年黑龙江、吉林、辽宁3个省份的粮食需求量可以为量化保障国家粮食安全、高效利用黑土地资源提供基本依据。依据粮食供需均衡原理,基于深度学习的多种农产品供需预测模型,以LSTM(长短时记忆神经网络)对2023-2032年中国粮食需求量进行预测,并引入黑龙江、吉林、辽宁各省的粮食承载系数,计算出各省粮食需求量,对满足未来粮食单产增加需求的黑土质量提升进行预判。随着社会经济发展和人口变化,2023-2032年东北三省各省的粮食需求量均稳中有增,其中稻谷需求量变幅不大,玉米和大豆需求量增幅明显。预计2032年,黑龙江、吉林、辽宁三省玉米需求量比2022年分别增长10.9%、23.2%、24.8%,吉林省和辽宁省未来10年的玉米需求量增幅明显高于黑龙江省;黑龙江、吉林、辽宁三省大豆需求量将比2022年分别增长47.7%、39.1%、34.8%,黑龙江省2023-2032年的大豆需求量的绝对值和增幅均最高。东北三省未来粮食需求呈增长趋势,受粮食消费结构持续变化影响,玉米、大豆需求增幅较大。基于此,未来东北三省要多途径提升粮食单产,以提升黑土耕地质量为基础,进一步筑牢国家商品粮生产基地,为保障国家粮食安全提供坚实基础。 展开更多
关键词 LSTM 粮食需求 东北三省 深度学习预测模型 粮食安全 黑土地保护 耕地质量
在线阅读 下载PDF
基于多种模型的流量预测研究
4
作者 高轶 霍永华 胡晓彦 《计算机与网络》 2022年第16期50-54,共5页
6G是下一代无线通信网络的发展方向,6G网络要求更高的峰值数据速率、移动性和更无处不在的智能连接。由于不同的场景和业务需要不同的网络切片(Network Slicing)承载,网络的性能指标各异,对各种资源的需求量也不尽相同,因此需要对网络... 6G是下一代无线通信网络的发展方向,6G网络要求更高的峰值数据速率、移动性和更无处不在的智能连接。由于不同的场景和业务需要不同的网络切片(Network Slicing)承载,网络的性能指标各异,对各种资源的需求量也不尽相同,因此需要对网络流量在时间和空间上进行预测。对时空流量建模,并提出了3种以深度学习为基础的流量预测方法:基于深度学习的时空数据预测模型(DeepST)、残差网络(ResNet)模型和卷积长短期记忆网络模型(ConvLSTM),针对每种模型的应用场景和优劣予以研究陈述,在此基础上完成模型的有效性验证和比较;最后,仿真验证。仿真结果表明,基于ResNet的流量预测模型预测效果更佳。 展开更多
关键词 流量预测 深度学习 基于深度学习的时空数据预测模型 残差网络模型 卷积长短期记忆网络模型
在线阅读 下载PDF
Construction and optimization of traditional Chinese medicine constitution prediction models based on deep learning
5
作者 ZHANG Xinge XU Qiang +1 位作者 WEN Chuanbiao LUO Yue 《Digital Chinese Medicine》 CAS CSCD 2024年第3期241-255,共15页
Objective To cater to the demands for personalized health services from a deep learning per-spective by investigating the characteristics of traditional Chinese medicine(TCM)constitu-tion data and constructing models ... Objective To cater to the demands for personalized health services from a deep learning per-spective by investigating the characteristics of traditional Chinese medicine(TCM)constitu-tion data and constructing models to explore new prediction methods.Methods Data from students at Chengdu University of Traditional Chinese Medicine were collected and organized according to the 24 solar terms from January 21,2020,to April 6,2022.The data were used to identify nine TCM constitutions,including balanced constitution,Qi deficiency constitution,Yang deficiency constitution,Yin deficiency constitution,phlegm dampness constitution,damp heat constitution,stagnant blood constitution,Qi stagnation constitution,and specific-inherited predisposition constitution.Deep learning algorithms were employed to construct multi-layer perceptron(MLP),long short-term memory(LSTM),and deep belief network(DBN)models for the prediction of TCM constitutions based on the nine constitution types.To optimize these TCM constitution prediction models,this study in-troduced the attention mechanism(AM),grey wolf optimizer(GWO),and particle swarm op-timization(PSO).The models’performance was evaluated before and after optimization us-ing the F1-score,accuracy,precision,and recall.Results The research analyzed a total of 31655 pieces of data.(i)Before optimization,the MLP model achieved more than 90%prediction accuracy for all constitution types except the balanced and Qi deficiency constitutions.The LSTM model's prediction accuracies exceeded 60%,indicating that their potential in TCM constitutional prediction may not have been fully realized due to the absence of pronounced temporal features in the data.Regarding the DBN model,the binary classification analysis showed that,apart from slightly underperforming in predicting the Qi deficiency constitution and damp heat constitution,with accuracies of 65%and 60%,respectively.The DBN model demonstrated considerable discriminative power for other constitution types,achieving prediction accuracy rates and area under the receiver op-erating characteristic(ROC)curve(AUC)values exceeding 70%and 0.78,respectively.This indicates that while the model possesses a certain level of constitutional differentiation abili-ty,it encounters limitations in processing specific constitutional features,leaving room for further improvement in its performance.For multi-class classification problem,the DBN model’s prediction accuracy rate fell short of 50%.(ii)After optimization,the LSTM model,enhanced with the AM,typically achieved a prediction accuracy rate above 75%,with lower performance for the Qi deficiency constitution,stagnant blood constitution,and Qi stagna-tion constitution.The GWO-optimized DBN model for multi-class classification showed an increased prediction accuracy rate of 56%,while the PSO-optimized model had a decreased accuracy rate to 37%.The GWO-PSO-DBN model,optimized with both algorithms,demon-strated an improved prediction accuracy rate of 54%.Conclusion This study constructed MLP,LSTM,and DBN models for predicting TCM consti-tution and improved them based on different optimisation algorithms.The results showed that the MLP model performs well,the LSTM and DBN models were effective in prediction but with certain limitations.This study also provided a new technology reference for the es-tablishment and optimisation strategies of TCM constitution prediction models,and a novel idea for the treatment of non-disease. 展开更多
关键词 Traditional Chinese medicine(TCM) CONSTITUTION Deep learning Constitution classification Prediction model Optimization research
在线阅读 下载PDF
复杂地层中盾构掘进速度的调控分析——以新建铁路横琴至珠海机场段HJZQ-2标隧道工程为例 被引量:7
6
作者 朱小藻 《隧道建设(中英文)》 北大核心 2020年第S01期107-114,共8页
为解决复杂软弱地层中土压平衡盾构掘进速度难以用理论方法预测调控的问题,基于皮尔森相关系数分析了掘进参数与掘进速度的相关性,并提出盾构掘进速度的深度学习预测模型。模型运用粒子群优化算法对BP神经网络的权值与偏置值进行优化,... 为解决复杂软弱地层中土压平衡盾构掘进速度难以用理论方法预测调控的问题,基于皮尔森相关系数分析了掘进参数与掘进速度的相关性,并提出盾构掘进速度的深度学习预测模型。模型运用粒子群优化算法对BP神经网络的权值与偏置值进行优化,以克服基于梯度下降算法的传统BP神经网络易陷入局部最小值和预测误差大等缺点,预测模型将地质参数与掘进参数作为输入值,盾构掘进速度作为输出值(预测值)。以新建铁路横琴至珠海机场段HJZQ-2标隧道工程为依托,基于贯入度与掘进速度的相关性最高且呈正相关的分析结果,采用监测数据对模型进行训练,利用训练后的深度学习模型对掘进速度进行预测分析。结果显示,具有2层隐藏层的深度学习PSO-BP模型的预测误差基本控制在±4 mm/min(误差在10%以内),满足实际工程要求,从而验证了模型的有效性与适用性。 展开更多
关键词 隧道工程 土压平衡盾构 掘进速度 PSO-BP深度学习预测模型
在线阅读 下载PDF
Anomaly detection of earthquake precursor data using long short-term memory networks 被引量:7
7
作者 Cai Yin Mei-Ling Shyu +2 位作者 Tu Yue-Xuan Teng Yun-Tian Hu Xing-Xing 《Applied Geophysics》 SCIE CSCD 2019年第3期257-266,394,共11页
Earthquake precursor data have been used as an important basis for earthquake prediction.In this study,a recurrent neural network(RNN)architecture with long short-term memory(LSTM)units is utilized to develop a predic... Earthquake precursor data have been used as an important basis for earthquake prediction.In this study,a recurrent neural network(RNN)architecture with long short-term memory(LSTM)units is utilized to develop a predictive model for normal data.Furthermore,the prediction errors from the predictive models are used to indicate normal or abnormal behavior.An additional advantage of using the LSTM networks is that the earthquake precursor data can be directly fed into the network without any elaborate preprocessing as required by other approaches.Furthermore,no prior information on abnormal data is needed by these networks as they are trained only using normal data.Experiments using three groups of real data were conducted to compare the anomaly detection results of the proposed method with those of manual recognition.The comparison results indicated that the proposed LSTM network achieves promising results and is viable for detecting anomalies in earthquake precursor data. 展开更多
关键词 Earthquake precursor data deep learning LSTM-RNN prediction model anomaly detect io n
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部