期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
基于通道混洗和深度可分离卷积的混合型晶圆缺陷识别 被引量:1
1
作者 邓广远 王红成 《东莞理工学院学报》 2024年第3期17-23,共7页
针对传统深度神经网络对混合型晶圆缺陷信息提取计算效率低的问题,提出了一种基于通道混洗和深度可分离卷积的轻量化深度神经网络,实现了混合型晶圆缺陷的高效识别。在晶圆图数据集Mixed-type WM38上的实验结果表明,所提出的模型对比于... 针对传统深度神经网络对混合型晶圆缺陷信息提取计算效率低的问题,提出了一种基于通道混洗和深度可分离卷积的轻量化深度神经网络,实现了混合型晶圆缺陷的高效识别。在晶圆图数据集Mixed-type WM38上的实验结果表明,所提出的模型对比于一些现有的深度学习模型,在耗费较少的训练和推理时间的同时取得了较高的模型精度,其平均正确率达97.32%,参数量仅有0.4786 M。 展开更多
关键词 计算机视觉 晶圆缺陷识别 深度学习 通道混洗 深度可分离卷积
在线阅读 下载PDF
基于非对称混洗卷积神经网络的苹果叶部病害分割 被引量:19
2
作者 何自芬 黄俊璇 +1 位作者 刘强 张印辉 《农业机械学报》 EI CAS CSCD 北大核心 2021年第8期221-230,共10页
针对苹果叶部病害由于数据集类间样本不均衡和拍摄角度、光照变化等实际成像与环境因素造成的精度低和泛化能力差的问题,本文提出了一种新型的非对称混洗卷积神经网络ASNet。首先,通过在ResNeXt骨干网络中添加改进的scSE注意力机制模块... 针对苹果叶部病害由于数据集类间样本不均衡和拍摄角度、光照变化等实际成像与环境因素造成的精度低和泛化能力差的问题,本文提出了一种新型的非对称混洗卷积神经网络ASNet。首先,通过在ResNeXt骨干网络中添加改进的scSE注意力机制模块增强网络提取的特征;其次,针对多数叶片病害特征分布相对分散的问题,使用非对称混洗卷积模块代替原始的残差模块来扩大卷积核的感受野和增强特征提取能力,从而提升模型的分割精度和泛化能力;最后,在非对称混洗卷积模块中使用通道压缩和通道混洗的方式弥补了分组卷积造成的通道间关联性不足的缺陷,降低了由于叶部病害类间不均衡导致的传统网络模型精度偏低的问题。在COCO数据集评价指标下,实验结果表明,相比于骨干网络为ResNeXt-50的原始Mask R-CNN模型,本文模型的平均分割精度达到96.8%,提升了5.2个百分点,模型权重文件减小为321 MB,减小了170 MB。对实地采集和AI Challanger农作物病害分割挑战赛的240幅苹果叶片图像进行测试,结果表明,本文模型ASNet对苹果黑腐病、锈病与黑星病3种病害和健康叶片的平均分割精度达到94.7%。 展开更多
关键词 苹果叶部 病害分割 ASNet模型 非对称混洗卷积 通道压缩 注意力机制
在线阅读 下载PDF
基于MDL-U2-Net的盆底超声图像轻量级分割及参数测量
3
作者 刘孝保 甘博敏 +1 位作者 姚廷强 申吉泓 《计算机辅助设计与图形学学报》 北大核心 2025年第2期277-292,共16页
准确地分割超声图像中盆底区域,是实现盆底疾病计算机辅助诊断的重要环节.针对盆底形态复杂、边界模糊、分割算法参数量庞大以及参数测量精度有限等问题,搭建了一种轻量级语义分割网络MDL-U2-Net并提出修补算法AC-F.首先,对基准U2-Net... 准确地分割超声图像中盆底区域,是实现盆底疾病计算机辅助诊断的重要环节.针对盆底形态复杂、边界模糊、分割算法参数量庞大以及参数测量精度有限等问题,搭建了一种轻量级语义分割网络MDL-U2-Net并提出修补算法AC-F.首先,对基准U2-Net进行结构优化和通道数调整,以有效地降低模型参数量;其次,融入复合损失函数以缓解训练损失波动并提升边界保持能力,提高网络对模糊边界的分割准确性;之后,提出深度非对称多尺度混洗卷积模块,以捕获特征空间采样的位置偏移信息,弥补轻量网络感受野不足和特征提取能力较弱的缺陷,提高网络对盆底复杂形态的建模能力;最后,采用修补算法对分割盆底进行精细化填补,以提高盆底完整性和参数测量的精度.在自制数据集上的实验结果表明,MDL-U2-Net对盆底分割的Jaccard,Recall和HD95指标分别达到91.226%,93.589%和1.074,与基准U2-Net相比,模型参数量缩减了94.37个百分点;此外,经AC-F算法处理后的区域面积测量百分误差降至1.25%,ICC达到0.998且有95%(76/80)的数据在95%LoA内,能够实现轻量级分割和精确参数测量. 展开更多
关键词 盆底超声图像 轻量化 复合损失函数 深度非对称通道混洗卷积模块 参数测量
在线阅读 下载PDF
面向表情识别的重影非对称残差注意力网络模型 被引量:2
4
作者 闫河 李梦雪 +1 位作者 张宇宁 刘建骐 《智能系统学报》 CSCD 北大核心 2023年第2期333-340,共8页
针对ResNet50中的Bottleneck经过1×1卷积降维后主干分支丢失部分特征信息而导致在表情识别中准确率不高的问题,本文通过引入Ghost模块和深度可分离卷积分别替换Bottleneck中的1×1卷积和3×3卷积,保留更多原始特征信息,提... 针对ResNet50中的Bottleneck经过1×1卷积降维后主干分支丢失部分特征信息而导致在表情识别中准确率不高的问题,本文通过引入Ghost模块和深度可分离卷积分别替换Bottleneck中的1×1卷积和3×3卷积,保留更多原始特征信息,提升主干分支的特征提取能力;利用Mish激活函数替换Bottleneck中的ReLU激活函数,提高了表情识别的准确率;在此基础上,通过在改进的Bottleneck之间添加非对称残差注意力模块(asymmetric residual attention block, ARABlock)来提升模型对重要信息的表示能力,从而提出一种面向表情识别的重影非对称残差注意力网络(ghost asymmetric residual attention network, GARAN)模型。对比实验结果表明,本文方法在FER2013和CK+表情数据集上具有较高的识别准确率。 展开更多
关键词 表情识别 特征提取 ResNet50 Ghost模块 Mish 非对称残差注意力 深度可分离卷积 深度学习
在线阅读 下载PDF
基于改进注意力模块的船舶涂装缺陷检测方法
5
作者 庞博 卜赫男 +2 位作者 李磊 周宏根 景旭文 《江苏科技大学学报(自然科学版)》 CAS 2024年第3期1-8,共8页
针对人工检测船舶缺陷效率低、传统检测网络准确率差的问题,提出一种基于改进注意力模块(improved convolutional block attention module, ICBAM)的船舶涂装缺陷检测方法.首先,YOLOv4在路径聚合网络中将深度可分离卷积代替常规卷积形成... 针对人工检测船舶缺陷效率低、传统检测网络准确率差的问题,提出一种基于改进注意力模块(improved convolutional block attention module, ICBAM)的船舶涂装缺陷检测方法.首先,YOLOv4在路径聚合网络中将深度可分离卷积代替常规卷积形成IYOLOv4,减少模型计算量;其次,将ICBAM融入IYOLOv4的路径聚合网络Route层后形成ICBAM-IYOLOv4,ICBAM在通道上构建多频率通道改善全局平均池化,利用一维卷积代替全连接层聚合相邻通道间的信息,减少模型参数;然后,在空间上融合Inception v3思想和特征分层思想改善空洞卷积;最后,在船舶涂装缺陷样本数据增强的基础上,对ICBAM-IYOLOv4进行测试.实验结果表明:ICBAM-IYOLOv4相比其他算法,其损失值更低、收敛更快;平均精度均值(mean average precision, MAP)在训练集和测试集上分别提高了1.89%和1.91%. 展开更多
关键词 船舶涂装 缺陷检测 特征分层 多频率通道 注意力模块 深度可分离卷积 一维卷积
在线阅读 下载PDF
基于轻量级卷积神经网络的实时缺陷检测方法研究 被引量:10
6
作者 姚明海 杨圳 《计算机测量与控制》 2019年第6期22-25,40,共5页
应用机器视觉实现磁片表面缺陷的自动检测可以提高生产效率、降低生产成本;深度卷积神经网络具有高精度的分类性能,尤其在图像识别方面有显著的优点;但是目前提出的深度神经网络模型,由于参数量和计算量的巨大,在工业生产流水线上不能... 应用机器视觉实现磁片表面缺陷的自动检测可以提高生产效率、降低生产成本;深度卷积神经网络具有高精度的分类性能,尤其在图像识别方面有显著的优点;但是目前提出的深度神经网络模型,由于参数量和计算量的巨大,在工业生产流水线上不能满足实时检测的需求;针对这个问题,基于深度可分离卷积和通道混洗,提出了一种轻量级高效低延时的卷积神经网络架构MagnetNets;为了评估MagnetNets网络模型的性能,将MagnetNets网络模型与MobileNets、ShuffleNet、Xception、MobileNetV2在公开数据集ImageNet中做了对比实验;然后将MagnetNets网络模型应用在磁片缺陷检测系统中进行缺陷检测;实验结果表明,提出的网络架构显著地减少参数数量,具有良好的性能;同时在磁片缺陷检测系统中减少了延时,提高检测速度,缺陷检测识别率达到了97.3%。 展开更多
关键词 卷积神经网络 深度可分离卷积 通道混洗 缺陷检测
在线阅读 下载PDF
基于深度学习的偏光片缺陷实时检测算法 被引量:4
7
作者 刘瑞珍 孙志毅 +3 位作者 王安红 杨凯 王银 孙前来 《太原理工大学学报》 CAS 北大核心 2020年第1期125-130,共6页
针对现有的基于深度学习检测缺陷的方法虽然可以保证分类的准确率,但其检测速度慢,模型占用内存大,难以满足在线检测系统的实时性要求等问题,提出了一种基于深度学习的偏光片缺陷实时检测算法。首先,设计了一个新的并行模块用于构建偏... 针对现有的基于深度学习检测缺陷的方法虽然可以保证分类的准确率,但其检测速度慢,模型占用内存大,难以满足在线检测系统的实时性要求等问题,提出了一种基于深度学习的偏光片缺陷实时检测算法。首先,设计了一个新的并行模块用于构建偏光片缺陷检测网络,模块将不同尺寸大小的卷积核相混合,与传统的卷积层相比,可以融合不同尺度的特征并能提取到更丰富的缺陷特征;用深度可分离卷积替代模块中的标准卷积,这可以大大减少网络的参数量和乘法累计运算量(MACCs).其次,用非对称卷积代替并行模块中的深度可分离卷积得到并行非对称卷积模块,可以进一步减少网络的参数量。最后,使用全局均值池化层代替全连接层,大大减少了网络的参数量。实验结果表明,偏光片缺陷分类模型平均每张图片的测试时间为108 ms,模型在测试集上的准确率达到99.4%,同时模型占用内存为0.583 MB,能够满足工业中偏光片缺陷检测的实时性要求。 展开更多
关键词 偏光片 缺陷检测 深度学习 并行模块 并行非对称卷积 全局均值池化
在线阅读 下载PDF
面向图像目标识别的轻量化卷积神经网络 被引量:5
8
作者 史宝岱 张秦 +1 位作者 李瑶 李宇环 《计算机工程》 CAS CSCD 北大核心 2022年第6期257-262,共6页
传统图像目标识别模型通常使用结构复杂、层数更深的神经网络以提升其在计算机视觉领域的准确率,但该类模型存在对计算机算力要求过高、占用内存较大、无法部署在手机等小型计算机上的问题。提出一种轻量化卷积神经网络ConcatNet,采用... 传统图像目标识别模型通常使用结构复杂、层数更深的神经网络以提升其在计算机视觉领域的准确率,但该类模型存在对计算机算力要求过高、占用内存较大、无法部署在手机等小型计算机上的问题。提出一种轻量化卷积神经网络ConcatNet,采用特征拼接的方式,通过多支路并行将通道注意力机制与深度可分离卷积相结合,在增强有效特征权重的基础上,降低模型的参数量和复杂度,实现网络的轻量化。在网络输出阶段,采用先筛选再混洗的方式提高模型的识别精度。利用全局平均池化和全局随机池化提取中间特征图的信息,其中全局平均池化可以较好地保留背景信息,全局随机池化按概率值选取特征,具有较强的泛化性,两者相结合能够减少信息的丢失。在CIFAR-10、CIFAR-100等数据集上的实验结果表明,与MobileNetV2等轻量化神经网络相比,ConcatNet网络在保持Top-1和Top-5精度相当的情况下,将参数量和计算复杂度均降低了约50%,极大降低了对承载设备的要求。 展开更多
关键词 轻量化 通道注意力 深度可分离卷积 通道混洗 特征拼接
在线阅读 下载PDF
基于改进深度残差网络的电力系统暂态电压稳定评估 被引量:3
9
作者 刘浩然 任惠 +3 位作者 郑至斌 王威 夏静 杨金豪 《现代电力》 北大核心 2023年第6期879-889,共11页
传统的电力系统暂态电压稳定评估模型存在2方面问题:故障过程中的关键信息难以捕捉、暂态稳定样本与失稳样本不平衡导致模型对多数类样本存在倾向性。为此,提出了基于改进深度残差网络的电压稳定预警模型。首先,为了捕捉故障过程中的关... 传统的电力系统暂态电压稳定评估模型存在2方面问题:故障过程中的关键信息难以捕捉、暂态稳定样本与失稳样本不平衡导致模型对多数类样本存在倾向性。为此,提出了基于改进深度残差网络的电压稳定预警模型。首先,为了捕捉故障过程中的关键信息,在残差网络中嵌入卷积注意力模块,通过对时间通道与空间通道的双重注意力来挖掘电力系统动态轨迹中潜在的时空关系;其次,针对训练过程中模型倾向于多数类样本的问题,引入基于梯度平衡机制的损失函数来减小不平衡样本对评估结果的影响;第三,为了强化模型对数据特征的提取能力,将传统卷积核替换为非对称卷积模块。最后,通过在IEEE39节点系统上接入2种不同风电占比进行测试,进一步验证所提方法在暂态电压稳定评估中的优异性能。 展开更多
关键词 暂态电压稳定评估 深度残差网络 卷积注意力模块 梯度平衡机制 非对称卷积模块
在线阅读 下载PDF
基于深度残差网络的人体行为识别算法研究 被引量:2
10
作者 冯宇 席志红 《计算机测量与控制》 2022年第3期251-258,共8页
针对原始C3D卷积神经网络的层数较少、参数量较大和难以关注关键帧而导致的人体行为识别准确率较低的问题,提出一种基于改进型C3D的注意力残差网络模型;首先,增加原始网络卷积层并采用卷积核合并与拆分操作实现(3×1×7)和(3... 针对原始C3D卷积神经网络的层数较少、参数量较大和难以关注关键帧而导致的人体行为识别准确率较低的问题,提出一种基于改进型C3D的注意力残差网络模型;首先,增加原始网络卷积层并采用卷积核合并与拆分操作实现(3×1×7)和(3×7×1)的非对称式卷积核,之后采用全预激活式残差网络结构来增加构建的非对称卷积层,并且在残差块中增加时空通道注意力模块;最后,为展示该算法的先进性和应用性,则将该算法与原始C3D网络以及其他流行算法分别在基准数据集HMDB51和自建的43类别体育运动数据集上相比较;实验结果表明,该算法与原始C3D网络相比,在HMDB51和43类体育运动数据集上分别提高了9.88%和21.61%,参数量比原来降低了38.68%,并且结果也优于其他流行算法。 展开更多
关键词 深度学习 三维卷积 非对称卷积 残差网络 注意力模块 人体行为识别
在线阅读 下载PDF
基于MDM-ResNet的脑肿瘤分类方法 被引量:5
11
作者 夏景明 邢露萍 +1 位作者 谈玲 宣大伟 《南京信息工程大学学报(自然科学版)》 CAS 北大核心 2022年第2期212-219,共8页
脑肿瘤是世界上最致命的癌症之一.由于脑肿瘤的多样性,其图像分类成为了当代研究的热点.近年来,深度神经网络(DNN)常用于医学图像分类,但随着深度的增加网络会出现梯度消失和过拟合的问题,而残差网络(ResNet)通过引入恒等映射可以缓解... 脑肿瘤是世界上最致命的癌症之一.由于脑肿瘤的多样性,其图像分类成为了当代研究的热点.近年来,深度神经网络(DNN)常用于医学图像分类,但随着深度的增加网络会出现梯度消失和过拟合的问题,而残差网络(ResNet)通过引入恒等映射可以缓解这些问题.因此,本文基于ResNet提出了一种MDM-ResNet网络,该网络由多尺寸卷积核模块(Multi-size convolution kernel module)、双通道池化层(Dual-channel pooling layer)和多深度融合残差块(Multi-depth fusion residual block)组成.本文实验在Figshare数据集上展开,采用数据增强操作对图像进行预处理,并利用5倍交叉验证方法对网络性能进行评估.最终实验结果表明MDM-ResNet能够对脑膜瘤(Meningioma)、胶质瘤(Glioma)和垂体瘤(Pituitary tumor)进行有效分类. 展开更多
关键词 脑肿瘤 深度神经网络(DNN) 残差网络(ResNet) 多尺寸卷积模块 通道池化层 深度融合残差块
在线阅读 下载PDF
基于多级上下文引导的实时语义分割网络 被引量:1
12
作者 文凯 熊俊臣 +1 位作者 邹伟 唐伟伟 《计算机应用研究》 CSCD 北大核心 2022年第4期1265-1269,1280,共6页
针对实时语义分割方法中因忽略其本质所导致的分割精度不高的问题,提出了一种多级上下文引导的轻量化网络。首先,将深度可分离卷积及非对称卷积相结合,设计了基于并行非对称卷积的上下文引导模型以学习局部特征及其周围上下文构成的联... 针对实时语义分割方法中因忽略其本质所导致的分割精度不高的问题,提出了一种多级上下文引导的轻量化网络。首先,将深度可分离卷积及非对称卷积相结合,设计了基于并行非对称卷积的上下文引导模型以学习局部特征及其周围上下文构成的联合特征;其次,将该模型堆叠于网络来实现特征的多级优化;最后,通过通道注意模型筛选出与更高阶段语义一致的浅层特征,从而提高分割效果。实验结果表明,所提网络在Cityscapes数据集上以94.7的帧速率获得了72.4%的平均交并比,并在CamVid数据集上取得显著的性能提升。同当前的其他实时语义分割方法相比,该网络性能更优。 展开更多
关键词 深度可分离卷积 非对称卷积 局部特征 上下文 通道注意
在线阅读 下载PDF
矿井图像超分辨率重建研究
13
作者 王媛彬 刘佳 +1 位作者 郭亚茹 吴冰超 《工矿自动化》 CSCD 北大核心 2023年第11期76-83,120,共9页
受井下粉尘大、照度低等环境影响,矿井图像存在分辨率低、细节模糊等问题,现有的图像超分辨率重建算法应用于矿井图像时,难以获取不同尺度图像信息、网络参数过大而影响重建速度,且重建图像易出现细节丢失、边缘轮廓模糊、伪影等问题。... 受井下粉尘大、照度低等环境影响,矿井图像存在分辨率低、细节模糊等问题,现有的图像超分辨率重建算法应用于矿井图像时,难以获取不同尺度图像信息、网络参数过大而影响重建速度,且重建图像易出现细节丢失、边缘轮廓模糊、伪影等问题。提出了一种基于多尺度密集通道注意力超分辨率生成对抗网络(SRGAN)的矿井图像超分辨率重建算法。设计了多尺度密集通道注意力残差块替代SRGAN原有的残差块,采用2路并行且卷积核大小不同的密集连接块,可充分获取图像特征;融入高效通道注意力模块,加强对高频信息的关注度;采用深度可分离卷积对网络进行轻量化,抑制网络参数的增加;利用纹理损失约束网络训练,避免网络加深时产生伪影。在井下数据集和公共数据集上对提出的矿井图像超分辨率重建算法和经典超分辨率重建算法BICUBIC,SRCNN,SRRESNET,SRGAN进行实验,结果表明:所提算法在主客观评价上总体优于对比算法,网络参数较SRGAN减少了2.54%,峰值信噪比与结构相似度较经典算法指标均值分别提高了0.764 dB和0.05358,能更好地关注图像的纹理、轮廓等细节信息,重建图像更符合人眼视觉。 展开更多
关键词 矿井图像 超分辨率重建 超分辨率生成对抗网络 多尺度密集通道注意力残差块 高效通道注意力模块 深度可分离卷积 纹理损失
在线阅读 下载PDF
融合注意力机制的轨道入侵异物检测轻量级模型研究 被引量:11
14
作者 管岭 贾利民 谢征宇 《铁道学报》 EI CAS CSCD 北大核心 2023年第5期72-81,共10页
基于智能视频分析的轨道线路环境入侵物自主识别是保障轨道交通运营安全的关键技术之一。然而基于神经网络的高精度目标检测模型严重依赖算力,部署成本高,很难普及运用。为此,提出一种改进yolov4-tiny的轻量级网络模型。在网络主干,通... 基于智能视频分析的轨道线路环境入侵物自主识别是保障轨道交通运营安全的关键技术之一。然而基于神经网络的高精度目标检测模型严重依赖算力,部署成本高,很难普及运用。为此,提出一种改进yolov4-tiny的轻量级网络模型。在网络主干,通过融合跨阶段结构和通道混洗策略,提出CSPShuffleNet结构,加快网络推理;在网络颈部,引入多头注意力机制,增强网络目标定位能力;在网络头部,使用深度可分离卷积替换传统卷积,进一步压缩网络参数量。基于铁路异物数据集的实验结果表明:相比于原始yolov4-tiny,本模型的均值平均精度最大提高1.4%,参数量减少49.9%,模型容量减少55.4%。验证了本模型对于固定平台和移动平台检测系统的普适性,从而为铁路安全保障提供决策支持。 展开更多
关键词 异物入侵检测 轻量化神经网络 深度可分离卷积 通道混洗 多头注意力机制
在线阅读 下载PDF
多通道融合可分离卷积神经网络下的脑部磁共振图像分割 被引量:8
15
作者 郭彤宇 王博 +1 位作者 刘悦 魏颖 《中国图象图形学报》 CSCD 北大核心 2019年第11期2009-2020,共12页
目的卷积神经网络方法可以提取到图像的深层次信息特征,在脑部磁共振图像(MRI)分割领域展现出优秀的性能。但大部分深度学习方法都存在参数量大,边缘分割不准确的问题。为克服上述问题,本文提出一种多通道融合可分离卷积神经网络(MFSCNN... 目的卷积神经网络方法可以提取到图像的深层次信息特征,在脑部磁共振图像(MRI)分割领域展现出优秀的性能。但大部分深度学习方法都存在参数量大,边缘分割不准确的问题。为克服上述问题,本文提出一种多通道融合可分离卷积神经网络(MFSCNN)模型分割脑图像。方法首先,在训练集中增加待分割脑结构及其边缘像素点的权重,强制使网络学习如何分割脑结构边缘部分,从而提升整体脑结构分割的准确率。其次,引入残差单元,以避免梯度弥散,同时使用深度可分离卷积代替原始的卷积层,在不改变网络每个阶段特征通道数的情况下,减少了网络训练的参数数量和训练时间,降低了训练成本。最后,将不同阶段的特征信息合并在一起,进行通道混洗,得到同时包含深浅层次信息的增强信息特征,加入到网络中进行训练,每个阶段的输入特征信息更丰富,学习特征的速度和收敛速度更快,显著地提升了网络的分割性能。结果在IBSR(internet brain segmentation repositor)数据集上的分割结果表明,MFSCNN的分割性能相对于普通卷积神经网络(CNN)方法要明显提高,且在边缘复杂的部分,分割效果更理想,Dice和IOU(intersection over union)值分别提升了0. 9%6. 6%,1. 3%9. 7%。在边缘平滑的部分,MFSCNN方法比引入残差块的神经网络模型(Res CNN)和引入局部全连接模块的神经网络模型(Dense CNN)分割效果要好,而且MFSCNN的参数量仅为Res CNN的50%,Dense CNN的28%,在提升分割性能的同时,也降低了运算复杂度,缩短了训练时间。同时,在IBSR、Hammer67n20、LPBA40这3个数据集上,MFSCNN的分割性能比现有的其他主流方法更出色。结论本文提出的MFSCNN方法,加强了网络特征的信息量,提升了网络模型的训练速度,在不同数据集上均获得更精确的MR脑部图像分割结果。 展开更多
关键词 MR脑部图像分割 卷积神经网络 深度可分离卷积 通道融合 通道混洗
原文传递
改进残差结构的轻量级故障诊断方法 被引量:4
16
作者 刘芯志 彭成 +1 位作者 满君丰 刘翊 《计算机工程与设计》 北大核心 2022年第8期2303-2310,共8页
针对大型机械装备环境噪声复杂,深度学习网络层数过深导致的巨大计算开销以及故障诊断人工特征提取的复杂性,提出改进残差结构的轻量级SCARN模型。SCARN模型使用蓝图可分离卷积代替常规卷积层,减少大量参数,设计轻量级空间通道注意力结... 针对大型机械装备环境噪声复杂,深度学习网络层数过深导致的巨大计算开销以及故障诊断人工特征提取的复杂性,提出改进残差结构的轻量级SCARN模型。SCARN模型使用蓝图可分离卷积代替常规卷积层,减少大量参数,设计轻量级空间通道注意力结构,加强特征表达能力,改进深度残差收缩模块,提高模型复杂噪声场景的鲁棒性。通过增加不同幅值的高斯白噪声模拟轴承信号复杂环境场景。实验结果表明,该模型4种评价指标均优于对比算法,具有良好的抗噪性能。 展开更多
关键词 蓝图可分离卷积 空间通道注意力 深度残差收缩模块 轻量级 高斯白噪声
在线阅读 下载PDF
基于时空特征的生猪动作识别 被引量:1
17
作者 苏森 陈春雨 +1 位作者 刘文龙 李诚 《应用科技》 CAS 2021年第4期80-84,共5页
针对现代化养殖业无人化、智能化的需求,以目标检测网络YOLOv2为基础,提出了一种基于深度学习提取时空特征的生猪动作识别与定位的方法。对待检测视频关键帧中的生猪空间位置信息与视频流时序动作特征进行检测,采用通道注意力模块将这2... 针对现代化养殖业无人化、智能化的需求,以目标检测网络YOLOv2为基础,提出了一种基于深度学习提取时空特征的生猪动作识别与定位的方法。对待检测视频关键帧中的生猪空间位置信息与视频流时序动作特征进行检测,采用通道注意力模块将这2种特征进行合理且平滑的特征融合,实现了一个端到端的动作识别网络,可以直接从视频序列中预测得到关键帧的包围框和动作分类概率。通过对某生猪养殖场群养栏监控视频进行训练和测试,研究了通道注意力模块和网络输入视频帧采样间隔对检测效果的影响,验证了三维卷积神经网络在生猪动作识别与定位中的有效性。 展开更多
关键词 时空特征 生猪动作识别 YOLOv2 深度学习 视频流 通道注意力模块 特征融合 三维卷积神经网络
在线阅读 下载PDF
多模式特征融合网络肺结节良恶性分类方法 被引量:3
18
作者 尹智贤 夏克文 武盼盼 《计算机工程与应用》 CSCD 北大核心 2023年第23期228-236,共9页
胸部计算机断层扫描(computed tomography,CT)中肺结节良恶性的精确分类对于肺癌的早期诊断具有重要意义。然而,CT影像中肺结节背景的复杂,以及图像特征提取不全面等问题,为实现肺结节良恶性的精确分类带来困扰。为此,提出了多模式特征... 胸部计算机断层扫描(computed tomography,CT)中肺结节良恶性的精确分类对于肺癌的早期诊断具有重要意义。然而,CT影像中肺结节背景的复杂,以及图像特征提取不全面等问题,为实现肺结节良恶性的精确分类带来困扰。为此,提出了多模式特征融合网络肺结节良恶性分类方法。具体地,以MobileNet V3为骨干网络,以原始肺结节CT图像及提取出的结节图像为输入,设计了一种双路径特征提取网络,不仅能够有效提取原CT图像的全局信息,还能有效挖掘肺结节区域的判别性特征,以弥补结节较小时网络过多关注其周围组织从而产生误判的问题。此外,在特征提取阶段引入convolutional block attention module(CBAM)和通道混洗机制,进一步增强了网络的特征表达能力。同时,对原MobileNet V3网络结构做出修改,删除最后四组基于倒残差结构的bottlenecks(bnecks)模块,使模型能够以较小的时间和空间复杂度精确诊断恶性结节。在LIDC-IDRI数据集上的实验表明,提出的方法能够在显著降低网络参数量和FLOPs的同时实现对肺结节良恶性的精确分类,分类准确率、敏感性、特异性、精确率、F1值和AUC值分别达到了93.71%、94.03%、93.48%、95.56%、92.65%和98.66%。 展开更多
关键词 肺结节良恶性分类 特征融合 卷积块注意力模块(CBAM) 通道混洗 MobileNet V3
在线阅读 下载PDF
基于改进SegNet的电力线自动检测方法 被引量:1
19
作者 杨坚 李剑 徐硕 《浙江电力》 2023年第6期112-118,共7页
无人机自动巡检是输电线路智能化巡检的重要环节。针对巡检过程中无人机拍摄的视频图像背景复杂、电力线检测精度差、检测速率较低等问题,提出一种基于改进SegNet模型的电力线检测算法。首先,在编码器中引入残差模块和非对称卷积,减小... 无人机自动巡检是输电线路智能化巡检的重要环节。针对巡检过程中无人机拍摄的视频图像背景复杂、电力线检测精度差、检测速率较低等问题,提出一种基于改进SegNet模型的电力线检测算法。首先,在编码器中引入残差模块和非对称卷积,减小网络计算负担;其次,减少解码层网络层数,并对编码器与解码器进行特征融合,提高检测精度;最后,利用改进SegNet在构建的电力线数据集中进行训练,准确率和交并比均值分别达到了89.4%和86.62%,单张检测时间仅46 ms。实验结果表明,基于改进SegNet模型的电力线检测算法可实现较高精度的实时检测。 展开更多
关键词 无人机巡检 深度学习 改进SegNet 残差模块 非对称卷积
在线阅读 下载PDF
一种基于U-Net的图像去模糊方法
20
作者 张乾俊 廉佐政 赵红艳 《高师理科学刊》 2022年第5期47-51,共5页
针对现有深度学习的图像去模糊方法存在网络接受域小、制约去模糊效果的问题,提出了一种改进的U-Net(U形卷积神经网络)模型,该模型使用深度可分离卷积实现标准卷积操作,以减少模型计算和参数.模型中嵌入小波变换,分离图像的上下文和纹... 针对现有深度学习的图像去模糊方法存在网络接受域小、制约去模糊效果的问题,提出了一种改进的U-Net(U形卷积神经网络)模型,该模型使用深度可分离卷积实现标准卷积操作,以减少模型计算和参数.模型中嵌入小波变换,分离图像的上下文和纹理信息,降低模型训练的难度.设计的密集多接受域通道模块可以提取图像细节信息,从而提高小波重构图像的质量.实验表明,该方法在峰值信噪比(PSNR)和结构相似性(SSIM)方面具有较好的性能,模型参数较少,图像恢复时间较短. 展开更多
关键词 深度可分离卷积 U-Net模型 密集多接受域通道模块 小波变换
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部