随着分布式风力发电接入配电网的比例不断提高,考虑风电出力随机性的分布式风电规划成为了配电网规划中的重要研究内容。提出了一个计及风速不确定性的鲁棒优化规划方法,为了简化配电网中鲁棒优化的计算,首先对配电网的潮流计算进行了...随着分布式风力发电接入配电网的比例不断提高,考虑风电出力随机性的分布式风电规划成为了配电网规划中的重要研究内容。提出了一个计及风速不确定性的鲁棒优化规划方法,为了简化配电网中鲁棒优化的计算,首先对配电网的潮流计算进行了线性化处理,然后又利用线性优化强对偶理论将鲁棒优化模型转变成了一个混合整型线性规划(mixed integer linear program,MILP)问题。接着又引入了可调鲁棒优化规划模型,通过不确定度弥补鲁棒优化偏于保守的不足。最后通过商业软件CPLEX对上述问题进行求解计算,算例分析表明,使用所提的鲁棒优化模型可以快速有效的计算出规划结果,可调鲁棒优化模型可以提高系统的性能鲁棒性。展开更多
作为智能电力系统建设的核心,电力相关芯片的快速普及使得芯片的能耗也成为了电力系统的能耗中不可忽视的一部分。针对电力终端多核芯片的能耗问题,首先基于原有的任务调度技术,提出了考虑任务运行时间概率分布(task execution time pro...作为智能电力系统建设的核心,电力相关芯片的快速普及使得芯片的能耗也成为了电力系统的能耗中不可忽视的一部分。针对电力终端多核芯片的能耗问题,首先基于原有的任务调度技术,提出了考虑任务运行时间概率分布(task execution time probability,TETP)的任务内调度方案;并利用混合整型线性规划(mixed integer linear programming,MILP)将该问题建模,以求用数学方法得到该调度方案能获得的最优解。最后,通过建立实验验证平台对此方法加以验证,结果显示文中提出的调度方案相比于传统调度方案平均减少的能耗在30%以上。展开更多
In the past two decades, short-term scheduling of multipurpose batch plants has received significant attention. Most scheduling problems are modeled using either state-task-network or resource-task-network(RTN) proces...In the past two decades, short-term scheduling of multipurpose batch plants has received significant attention. Most scheduling problems are modeled using either state-task-network or resource-task-network(RTN) process representation. In this paper, an improved mixed integer linear programming model for short-term schedul-ing of multipurpose batch plants under maximization of profit is proposed based on RTN representation and unit-specific events. To solve the model, a hybrid algorithm based on line-up competition algorithm and linear programming is presented. The proposed model and hybrid algorithm are applied to two benchmark examples in literature. The simulation results show that the proposed model and hybrid algorithm are effective for short-term scheduling of multipurpose batch plants.展开更多
With diversified requirements and varying manufacturing environments, the optimal production planning for a steel mill becomes more flexible and complicated. The flexibility provides operators with auxiliary requireme...With diversified requirements and varying manufacturing environments, the optimal production planning for a steel mill becomes more flexible and complicated. The flexibility provides operators with auxiliary requirements through an implementable integrated production planning. In this paper, a mixed-integer nonlinear programming(MINLP) model is proposed for the optimal planning that incorporates various manufacturing constraints and flexibility in a steel plate mill. Furthermore, two solution strategies are developed to overcome the weakness in solving the MINLP problem directly. The first one is to transform the original MINLP formulation to an approximate mixed integer linear programming using a classic linearization method. The second one is to decompose the original model using a branch-and-bound based iterative method. Computational experiments on various instances are presented in terms of the effectiveness and applicability. The result shows that the second method performs better in computational efforts and solution accuracy.展开更多
Based on the study of supply chain(SC) and SC optimization in engineering projects, a mixed integer nonlinear programming(MINLP) optimization model is developed to minimize the total SC cost for international petroche...Based on the study of supply chain(SC) and SC optimization in engineering projects, a mixed integer nonlinear programming(MINLP) optimization model is developed to minimize the total SC cost for international petrochemical engineering projects. A steam cracking project is selected and analyzed, from which typical SC characteristics in international engineering projects in the area of petrochemical industry are summarized. The MINLP model is therefore developed and applied to projects with detailed data. The optimization results are analyzed and compared by the MINLP model, indicating that they are appropriate to SC management practice in engineering projects, and are consistent with the optimal priceeffective strategy in procurement. As a result, the model could provide useful guidance to SC optimization of international engineering projects in petrochemical industry, and improve SC management by selecting more reliable and qualified partner enterprises in SC for the project.展开更多
The key of production planning of refineries is to determine the production planning of units and blending schemes of blends in each period of the plan horizon,since they affect the effective utilization of components...The key of production planning of refineries is to determine the production planning of units and blending schemes of blends in each period of the plan horizon,since they affect the effective utilization of components of refineries and hence profits.The optimization is difficult,because of many complicated product production–consumption relationships in production processes,which are closely related to the running modes of the units.Additionally,the blending products,such as gasoline and diesel,may use multiple blending schemes for their production that increase the complexity of the problem.This paper models the production planning problem as a mixed integer nonlinear programming.Computational experiments for a refinery show the effectiveness of the model.The optimal results give the effective utilization of the self-produced components and increase of the profit.展开更多
设施服务分区问题(facility service districting problem,FSDP)是指在一个地理区域内,根据服务设施位置和服务能力为其划分服务区,满足供需平衡、形状紧凑和空间连续等要求。空间连续约束使FSDP能更好地满足学区划分、医疗区划分等问...设施服务分区问题(facility service districting problem,FSDP)是指在一个地理区域内,根据服务设施位置和服务能力为其划分服务区,满足供需平衡、形状紧凑和空间连续等要求。空间连续约束使FSDP能更好地满足学区划分、医疗区划分等问题的政策需求,但同时增加了它的求解难度。构造了一个FSDP混合整型线性规划模型,并设计了一个算法框架。框架包括问题定义、初始解、搜索算子和策略等基本模块,支持精确算法、元启发算法和混合算法设计。基于算法框架,实现了数学模型、模拟退火算法、迭代局部搜索算法和数学启发混合算法,并使用4个中大规模案例进行算法测试。实验结果表明,算法框架能够很好地处理空间连续约束的FSDP,支持多种算法快速实现,且求解质量接近案例目标值下界。展开更多
文摘随着分布式风力发电接入配电网的比例不断提高,考虑风电出力随机性的分布式风电规划成为了配电网规划中的重要研究内容。提出了一个计及风速不确定性的鲁棒优化规划方法,为了简化配电网中鲁棒优化的计算,首先对配电网的潮流计算进行了线性化处理,然后又利用线性优化强对偶理论将鲁棒优化模型转变成了一个混合整型线性规划(mixed integer linear program,MILP)问题。接着又引入了可调鲁棒优化规划模型,通过不确定度弥补鲁棒优化偏于保守的不足。最后通过商业软件CPLEX对上述问题进行求解计算,算例分析表明,使用所提的鲁棒优化模型可以快速有效的计算出规划结果,可调鲁棒优化模型可以提高系统的性能鲁棒性。
文摘作为智能电力系统建设的核心,电力相关芯片的快速普及使得芯片的能耗也成为了电力系统的能耗中不可忽视的一部分。针对电力终端多核芯片的能耗问题,首先基于原有的任务调度技术,提出了考虑任务运行时间概率分布(task execution time probability,TETP)的任务内调度方案;并利用混合整型线性规划(mixed integer linear programming,MILP)将该问题建模,以求用数学方法得到该调度方案能获得的最优解。最后,通过建立实验验证平台对此方法加以验证,结果显示文中提出的调度方案相比于传统调度方案平均减少的能耗在30%以上。
基金Supported by the National Natural Science Foundation of China(21376185)the Fundamental Research Funds for the Central Universities(WUT:2013-IV-032)
文摘In the past two decades, short-term scheduling of multipurpose batch plants has received significant attention. Most scheduling problems are modeled using either state-task-network or resource-task-network(RTN) process representation. In this paper, an improved mixed integer linear programming model for short-term schedul-ing of multipurpose batch plants under maximization of profit is proposed based on RTN representation and unit-specific events. To solve the model, a hybrid algorithm based on line-up competition algorithm and linear programming is presented. The proposed model and hybrid algorithm are applied to two benchmark examples in literature. The simulation results show that the proposed model and hybrid algorithm are effective for short-term scheduling of multipurpose batch plants.
基金Supported in part by the National High Technology Research and Development Program of China(2012AA041701)the National Natural Science Foundation of China(61320106009) the 111 Project of China(B07031)
文摘With diversified requirements and varying manufacturing environments, the optimal production planning for a steel mill becomes more flexible and complicated. The flexibility provides operators with auxiliary requirements through an implementable integrated production planning. In this paper, a mixed-integer nonlinear programming(MINLP) model is proposed for the optimal planning that incorporates various manufacturing constraints and flexibility in a steel plate mill. Furthermore, two solution strategies are developed to overcome the weakness in solving the MINLP problem directly. The first one is to transform the original MINLP formulation to an approximate mixed integer linear programming using a classic linearization method. The second one is to decompose the original model using a branch-and-bound based iterative method. Computational experiments on various instances are presented in terms of the effectiveness and applicability. The result shows that the second method performs better in computational efforts and solution accuracy.
文摘Based on the study of supply chain(SC) and SC optimization in engineering projects, a mixed integer nonlinear programming(MINLP) optimization model is developed to minimize the total SC cost for international petrochemical engineering projects. A steam cracking project is selected and analyzed, from which typical SC characteristics in international engineering projects in the area of petrochemical industry are summarized. The MINLP model is therefore developed and applied to projects with detailed data. The optimization results are analyzed and compared by the MINLP model, indicating that they are appropriate to SC management practice in engineering projects, and are consistent with the optimal priceeffective strategy in procurement. As a result, the model could provide useful guidance to SC optimization of international engineering projects in petrochemical industry, and improve SC management by selecting more reliable and qualified partner enterprises in SC for the project.
基金Supported by the State Key Laboratory of Synthetical Automation for Process Industries Fundamental Research Funds(2013ZCX02)
文摘The key of production planning of refineries is to determine the production planning of units and blending schemes of blends in each period of the plan horizon,since they affect the effective utilization of components of refineries and hence profits.The optimization is difficult,because of many complicated product production–consumption relationships in production processes,which are closely related to the running modes of the units.Additionally,the blending products,such as gasoline and diesel,may use multiple blending schemes for their production that increase the complexity of the problem.This paper models the production planning problem as a mixed integer nonlinear programming.Computational experiments for a refinery show the effectiveness of the model.The optimal results give the effective utilization of the self-produced components and increase of the profit.
文摘设施服务分区问题(facility service districting problem,FSDP)是指在一个地理区域内,根据服务设施位置和服务能力为其划分服务区,满足供需平衡、形状紧凑和空间连续等要求。空间连续约束使FSDP能更好地满足学区划分、医疗区划分等问题的政策需求,但同时增加了它的求解难度。构造了一个FSDP混合整型线性规划模型,并设计了一个算法框架。框架包括问题定义、初始解、搜索算子和策略等基本模块,支持精确算法、元启发算法和混合算法设计。基于算法框架,实现了数学模型、模拟退火算法、迭代局部搜索算法和数学启发混合算法,并使用4个中大规模案例进行算法测试。实验结果表明,算法框架能够很好地处理空间连续约束的FSDP,支持多种算法快速实现,且求解质量接近案例目标值下界。