期刊文献+
共找到485篇文章
< 1 2 25 >
每页显示 20 50 100
基于卷积时空混合神经网络的剩余使用寿命预测
1
作者 刘澳龙 唐向红 +1 位作者 陆见光 王涛 《组合机床与自动化加工技术》 北大核心 2025年第4期1-7,共7页
针对当前剩余使用寿命(remaining useful life,RUL)预测方法侧重于捕捉数据的时间依赖,忽略多传感器间的空间关系问题,提出了一种卷积时空混合神经网络(convolutional spatio-temporal hybrid neural network,CSTHNN)用于提取多传感器... 针对当前剩余使用寿命(remaining useful life,RUL)预测方法侧重于捕捉数据的时间依赖,忽略多传感器间的空间关系问题,提出了一种卷积时空混合神经网络(convolutional spatio-temporal hybrid neural network,CSTHNN)用于提取多传感器时间序列数据的时空特征用于RUL预测。CSTHNN利用卷积神经网络的卷积层感知相邻特征间的空间关系并提取传感器间的空间特征。通过位置编码以记忆时间依赖信息,并使用多头自注意力机制提取时间特征。最后将提取到的时空特征进行非线性变换,映射为RUL预测结果。通过在C-MAPSS数据集上的实验对CSTHNN进行了全面的分析和验证,表明了在RUL预测上提取空间特征的重要性以及该方法优秀的性能。 展开更多
关键词 剩余使用寿命 时空特征 卷积神经网络 混合神经网络
在线阅读 下载PDF
一种基于混合量子卷积神经网络的恶意代码检测方法
2
作者 熊其冰 苗启广 +2 位作者 杨天 袁本政 费洋扬 《计算机科学》 北大核心 2025年第3期385-390,共6页
量子计算是基于量子力学的全新计算模式,具有远超经典计算的强大并行计算能力。混合量子卷积神经网络结合了量子计算和经典卷积神经网络的双重优势,逐渐成为量子机器学习领域的研究热点之一。当前,恶意代码规模依然呈高速增长态势,检测... 量子计算是基于量子力学的全新计算模式,具有远超经典计算的强大并行计算能力。混合量子卷积神经网络结合了量子计算和经典卷积神经网络的双重优势,逐渐成为量子机器学习领域的研究热点之一。当前,恶意代码规模依然呈高速增长态势,检测模型越来越复杂,参数量越来越大,迫切需要一种高效轻量型的检测模型。为此,设计了一种混合量子卷积神经网络模型,将量子计算融入经典卷积神经网络,以提高模型的计算效率。该模型包含量子卷积层、池化层和经典全连接层。量子卷积层采用低深度强纠缠轻量型的参数化量子线路实现,仅使用两类量子门:量子旋转门Ry和受控非门CNOT(controlled-NOT),并仅使用两量子比特实现卷积计算。池化层基于经典计算和量子计算实现了3种池化方法。在Google TensorFlow Quantum上进行了模拟实验。实验结果显示,所提模型在恶意代码公开数据集DataCon2020和Ember的分类性能(accuracy,F1-score)分别达到了(97.75%,97.71%)和(94.65%,94.78%),均有明显提升。 展开更多
关键词 量子计算 量子机器学习 混合量子卷积神经网络 恶意代码检测
在线阅读 下载PDF
基于空洞卷积神经网络的突发公共卫生事件应急管理研究
3
作者 阿布都热依木·热西丁 帕提古丽·买买提 《产业与科技论坛》 2025年第1期262-264,共3页
突发公共卫生事件是指突然发生,造成或者可能造成社会公众健康严重损害的重大传染病疫情、群体性不明原因疾病、重大食物和职业中毒以及其他严重影响公众健康的事件。这些事件具有不可预测性、突发性、危害性等特点,因此需要快速、有效... 突发公共卫生事件是指突然发生,造成或者可能造成社会公众健康严重损害的重大传染病疫情、群体性不明原因疾病、重大食物和职业中毒以及其他严重影响公众健康的事件。这些事件具有不可预测性、突发性、危害性等特点,因此需要快速、有效地应对。空洞卷积神经网络是一种深度学习技术,具有强大的特征提取和分类能力,已经在图像识别、自然语言处理等领域取得了显著成果。然而,将空洞卷积神经网络应用于突发公共卫生事件应急管理措施的研究较少。本文介绍了空洞卷积神经网络的基本原理,通过收集突发公共卫生事件的相关数据,构建了一个基于空洞卷积神经网络的模型,用于识别突发公共卫生事件。 展开更多
关键词 突发公共卫生事件 空洞卷积神经网络 深度学习 应急管理
在线阅读 下载PDF
基于空洞卷积神经网络的药物和副作用关联预测
4
作者 徐凯 玄萍 《智能计算机与应用》 2025年第3期33-38,共6页
越来越多的研究表明识别药物相关的副作用有利于降低药物研发的成本和时间。新近的方法侧重于整合药物和副作用的多源数据,以预测药物的有潜力的候选副作用。然而,多个药物-副作用异构图中的节点的多样属性尚未得到充分利用。本文提出... 越来越多的研究表明识别药物相关的副作用有利于降低药物研发的成本和时间。新近的方法侧重于整合药物和副作用的多源数据,以预测药物的有潜力的候选副作用。然而,多个药物-副作用异构图中的节点的多样属性尚未得到充分利用。本文提出了新的药物-副作用关联预测方法,来编码和整合来自多个异构图的多样属性。针对2种药物相似性,分别构建了2个药物-副作用异构图,以整合和表示药物与副作用相关的相似性和关联连接。每个异构图具有其特定的属性,不同属性表示对于预测药物相关的候选副作用的贡献不同,本文建立了表示级注意机制来对其自适应地加以融合。同时进一步建立了基于空洞卷积神经网络的药物-副作用关联预测策略,通过扩大卷积核的感受野来增强卷积层的特征提取能力。本文采用五倍交叉验证的方法进行相关实验,实验结果表明本文的预测模型优于其他几个对比方法。 展开更多
关键词 药物-副作用关联预测 表示层级注意力机制 空洞卷积神经网络 结点对特征学习
在线阅读 下载PDF
基于优化广义S变换和混合输入神经网络的电能质量扰动识别
5
作者 刘海涛 武祥 +3 位作者 张淑清 刘大鹏 刘勇 穆勇 《计量学报》 北大核心 2025年第1期53-61,共9页
利用广义S变换时频矩阵中时间最大幅值曲线和频率最大幅值曲线与电能质量信号幅值和频谱包络线的相关性,提出优化广义S变换的方法对高斯窗函数参数进行自适应选取,充分保留了电能质量扰动的幅值和频率特征。然后提出一种混合输入神经网... 利用广义S变换时频矩阵中时间最大幅值曲线和频率最大幅值曲线与电能质量信号幅值和频谱包络线的相关性,提出优化广义S变换的方法对高斯窗函数参数进行自适应选取,充分保留了电能质量扰动的幅值和频率特征。然后提出一种混合输入神经网络框架,分别对原始时间序列和优化广义S变换得到的时频矩阵进行自动特征提取,最后将2种输入提取到的特征进行组合并利用全连接层来识别扰动类型。通过对包含26种电能质量扰动类型的仿真数据集进行训练和验证,结果表明所述方法对扰动识别准确率为99.77%;然后对2种实际电网扰动信号进行测试,对扰动识别准确率仍然能达到92.5%,高于传统单一输入神经网络。 展开更多
关键词 电学计量 电能质量 扰动识别 S变换 卷积神经网络 混合输入
在线阅读 下载PDF
基于变分模态分解与空洞卷积神经网络的配电网故障选线方法 被引量:3
6
作者 李成钢 刘亚东 +4 位作者 杨雪凤 侍哲 于非桐 刘乃毓 罗国敏 《电网与清洁能源》 CSCD 北大核心 2024年第2期110-118,126,共10页
小电流接地系统发生单相接地故障时,零序电流故障特征微弱且繁杂多变,传统选线方法可靠性有待提高。提出了一种基于变分模态分解(variational mode decomposition,VMD)与空洞卷积神经网络的配电网故障选线方法。首先,分析配电网健全线... 小电流接地系统发生单相接地故障时,零序电流故障特征微弱且繁杂多变,传统选线方法可靠性有待提高。提出了一种基于变分模态分解(variational mode decomposition,VMD)与空洞卷积神经网络的配电网故障选线方法。首先,分析配电网健全线路和故障线路的电气特征,采用零序电流作为故障特征信号,为选线模型的输入量提供理论依据;其次,通过变分模态分解把零序电流序列分成不同频率的固有模态函数,提高故障信号特征的平稳性和差异性;然后,采用空洞卷积神经网络作为选线网络,以增大卷积操作感受野的方式增强模型的自适应分类能力;最后,在MATLAB/Simulink中构建10kV配电网进行算例分析,结果表明,该方法在不同故障场景条件下均有较高的选线效果,验证了所提方法的鲁棒性与准确性。 展开更多
关键词 变分模态分解 空洞卷积神经网络 单相接地故障 故障选线 配电网
在线阅读 下载PDF
基于空间域图像生成和混合卷积神经网络的配电网故障选线方法 被引量:5
7
作者 郭威 史运涛 《电网技术》 EI CSCD 北大核心 2024年第3期1311-1321,共11页
传统的配电网故障选线方法大多基于一维零序电流序列构建故障诊断模型,单一的诊断模型往往限制了故障特征的深层挖掘。为了提高故障选线的准确率,提出一种基于空间域图像和混合卷积神经网络的配电网故障选线方法。首先,利用优化的降噪... 传统的配电网故障选线方法大多基于一维零序电流序列构建故障诊断模型,单一的诊断模型往往限制了故障特征的深层挖掘。为了提高故障选线的准确率,提出一种基于空间域图像和混合卷积神经网络的配电网故障选线方法。首先,利用优化的降噪光滑模型对零序电流信号进行降噪处理,减少外界环境的电磁干扰。其次,利用对称希尔伯特变换将一维时域信号转成二维空间域图像,图像的颜色、形状和纹理特征能够充分反映当前系统的运行状态。最后,将一维时域信号和二维空间域图像同步作为混合卷积神经网络的输入,充分挖掘系统的故障特征,利用Sigmoid函数实现故障选线。在辐射状配电网、IEEE-13节点模型、IEEE-34节点、StarSim仿真平台上模型上进行了实验验证。实验结果表明,该选线方法可以有效克服传统方法过度依赖主观特征选择、抗噪性能差等问题,能够在高阻接地、采样时间不同步、两点接地故障等极端情况下可靠地筛选出故障线路。 展开更多
关键词 故障选线 对称希尔伯特变换 混合卷积神经网络 空间域图像生成 优化的降噪光滑模型
在线阅读 下载PDF
基于混合卷积神经网络的多特征负荷预测方法研究 被引量:2
8
作者 邹晴 李乐 +5 位作者 柳楠 李超然 曹竞元 于金骁 朱霄珣 于淼 《电网与清洁能源》 CSCD 北大核心 2024年第9期54-62,共9页
针对负荷预测任务中准确性、稳定性和环境因素适应性的挑战,提出了一种基于混合卷积神经网络的电力负荷短期预测方法。提出了基于一维卷积神经网络(1D convolutional neural network,1D-CNN)的多尺度特征融合方法,通过融合不同尺度的特... 针对负荷预测任务中准确性、稳定性和环境因素适应性的挑战,提出了一种基于混合卷积神经网络的电力负荷短期预测方法。提出了基于一维卷积神经网络(1D convolutional neural network,1D-CNN)的多尺度特征融合方法,通过融合不同尺度的特征来捕捉负荷变化的趋势,提高了对负荷突变和复杂模式的识别能力;针对多种环境特征因素对电负荷影响的问题,设计了基于2D-CNN的多特征因素学习方法,提高了模型对环境因素与负荷间复杂关系的建模能力;构建了混合网络模型,通过对1D-CNN和2D-CNN的特征信息进行深度特征融合和信息传播,实现了有效关联时空特征的综合性负荷预测方法。开展了具体算例分析研究,通过分析参数优化和融合学习对模型精度和效率的影响,并与经典模型进行对比,结果显示所提模型的均方根误差(root mean squared error,RMSE)为36.3,平均绝对误差(mean absolute error,MAE)为5.34,平均绝对百分比误差(mean absolute percentage error,MAPE)为1.02%,有效提高了负荷预测的准确性和鲁棒性。 展开更多
关键词 负荷预测 混合卷积神经网络 多尺度特征融合 多特征因素 融合学习
在线阅读 下载PDF
基于空洞卷积神经网络的红壤有机质含量预测研究
9
作者 邓昀 吴蔚 +1 位作者 石媛媛 陈守学 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第10期2941-2952,共12页
土壤有机质(SOM)含量是衡量土壤肥力的重要指标之一,从高光谱遥感图像中有效预测SOM含量具有重要意义。传统的机器学习方法需要复杂的特征工程且精度不高,而以卷积神经网络(CNN)为代表的深度学习方法在土壤高光谱领域研究较少,且对小样... 土壤有机质(SOM)含量是衡量土壤肥力的重要指标之一,从高光谱遥感图像中有效预测SOM含量具有重要意义。传统的机器学习方法需要复杂的特征工程且精度不高,而以卷积神经网络(CNN)为代表的深度学习方法在土壤高光谱领域研究较少,且对小样本数据建模精度较差,光谱数据的空间特征提取不足。因此,提出了一种使用通道注意力机制的一维空洞卷积网络模型(SE-DCNN)。以广西国有黄冕林场和国有雅长林场采集的207个土壤样本为研究对象,对比分析了3种机器学习方法和4种深度学习方法在不同光谱预处理下的建模效果。结果表明,SE-DCNN模型因为使用了空洞卷积和通道注意力机制,扩大感受野并提取多尺度特征,有较好的建模精确度和泛化拟合能力。最佳预测模型是基于S-G降噪(SGD)和一阶微分(DR)的光谱预处理方式建立的SE-DCNN模型,验证集的决定系数(R^(2))为0.971,均方根误差(RMSE)为2.042 g·kg^(-1),相对分析误差(RPD)为5.273。因此,使用SE-DCNN能够对广西林地红壤有机质含量进行准确预测。 展开更多
关键词 土壤 高光谱 有机质 通道注意力机制 空洞卷积神经网络
在线阅读 下载PDF
基于CNN-LSTM混合神经网络的高速铁路地震响应预测 被引量:3
10
作者 张学兵 谢啸楠 +1 位作者 王礼 吴晗 《湘潭大学学报(自然科学版)》 CAS 2024年第1期1-13,共13页
为了更好地挖掘高速铁路在地震时的响应信息,提高光纤光栅监测的效率及预测精度,该文针对地震响应数据的时序性及非线性的特点,提出卷积神经网络(CNN)和长短期记忆(LSTM)网络的混合神经网络模型预测方法.通过在高速铁路简支梁桥上布设... 为了更好地挖掘高速铁路在地震时的响应信息,提高光纤光栅监测的效率及预测精度,该文针对地震响应数据的时序性及非线性的特点,提出卷积神经网络(CNN)和长短期记忆(LSTM)网络的混合神经网络模型预测方法.通过在高速铁路简支梁桥上布设准分布式光纤光栅采集地震时轨道板、钢轨、底座板、箱梁的响应数据,在每根光纤上布置7个光栅,利用两边光栅的响应数据预测中间点的光栅响应,将采集位置、历史数据及地震波形等信息作为特征图输入.利用CNN提取特征,再将提前提取出来的特征数据以时序方式作为LSTM网络的输入数据,最后LSTM网络进行地震应变响应预测.实验结果表明,LSTM网络在3层时效果最好,CNN-LSTM方法具有较高的预测精度,根均平方误差(R_(RMSE))、平均绝对误差(R_(MAE))、决定系数(R^(2))分别达到了0.3753、0.2968、0.9371. 展开更多
关键词 准分布式光纤光栅 振动台试验 地震响应 卷积神经网络-长短期记忆网络混合模型
在线阅读 下载PDF
基于卷积神经网络的氢氦协同效应下的空洞演化预测
11
作者 金华江 缪惠芳 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期149-159,共11页
[目的]了解辐照引起的核结构材料的降质过程对于反应堆安全运行至关重要.然而,由于辐照损伤实验和基于物理的多尺度模拟存在时间和资源密集性的特点,无法快速评估材料的空洞演化行为.[方法]应用卷积神经网络(CNN)对空洞尺寸和数密度进... [目的]了解辐照引起的核结构材料的降质过程对于反应堆安全运行至关重要.然而,由于辐照损伤实验和基于物理的多尺度模拟存在时间和资源密集性的特点,无法快速评估材料的空洞演化行为.[方法]应用卷积神经网络(CNN)对空洞尺寸和数密度进行预测,并在现有的实验数据范围外,对氦和氢注入量在连续参数变化范围内的相关性进行预测.[结果]经过参数优化的CNN可以很好地克服实验数据不足的限制,仅利用元素组分和环境参数即获得准确的数值回归.[结论]这项工作证明了CNN预测氢氦协同效应下辐照损伤的可行性,对核材料的优化和反应堆安全运行具有实际意义. 展开更多
关键词 卷积神经网络 氢氦协同效应 辐照损伤 空洞演化 性能预测
在线阅读 下载PDF
基于空洞卷积神经网络的铝硅合金实体关系联合抽取模型(英文)
12
作者 李武亮 邱洪顺 +3 位作者 周治邦 罗光辉 郜洪波 王鸿湫 《材料导报》 EI CAS CSCD 北大核心 2024年第S01期501-511,共11页
近年来,材料基因组计划(Material genome initiative,MGI)已经成为全球热点。随着材料科学的不断发展,材料文献中包含的海量信息成为研究人员关注的焦点,如何获取大量有效的材料数据是现阶段的主要挑战。本文采用自然语言处理(Natural l... 近年来,材料基因组计划(Material genome initiative,MGI)已经成为全球热点。随着材料科学的不断发展,材料文献中包含的海量信息成为研究人员关注的焦点,如何获取大量有效的材料数据是现阶段的主要挑战。本文采用自然语言处理(Natural language processing,NLP)技术从铝硅合金材料文献中获取数据。命名实体识别(Named entity recognition,NER)和关系抽取(Relation extraction,RE)是NLP的两个子任务,可以高效地从文本中提取单词信息及其之间的关系。铝硅合金文献中存在多种命名实体及多种关系,本文从材料科学文献中选择11种实体类型和13种关系类型,手动标注构建了铝硅合金实体关系数据集,将命名实体识别与关系抽取进行联合学习,即对实体识别和关系抽取进行统一建模。此外,针对基础模型的编码层存在捕捉文本语义信息不充分问题,通过改进模型的编码层,将基础模型的BiLSTM层与空洞卷积模型结合,组成了新的编码器,避免了BiLSTM处理文本信息丢失的问题,最终使铝硅合金实体关系联合抽取模型能够更好地捕捉文本中句子的语义单元信息。 展开更多
关键词 材料基因组 铝硅合金文献 实体关系联合抽取 数据集 空洞卷积神经网络
在线阅读 下载PDF
“认知负荷理论”在职业院校混合式教学模式中的应用——以“卷积神经网络”内容为例
13
作者 唐亮 《计算机应用文摘》 2024年第19期1-3,共3页
认知负荷理论是研究教学过程的重要理论。将这一理论与混合式教学模式相结合,可以有效优化教学过程,通过减少学生在学习时产生的内部和外部认知负荷,提升关联认知负荷,从而优化学生的学习效果。
关键词 认知负荷理论 混合式教学 卷积神经网络
在线阅读 下载PDF
基于混合神经网络的多维视觉传感信号模式分类
14
作者 陈威 蔡奕侨 《传感技术学报》 CAS CSCD 北大核心 2024年第6期1035-1040,共6页
传感器采集的数字信号分类精度差,导致关键信息的丢失。为了提高传感数据的可靠性和有效性,提出基于混合神经网络的多维视觉传感信号模式分类方法。结合卷积神经网络(CNN)、循环神经网络(RNN)构建混合神经网络,以更有效地表示多维视觉... 传感器采集的数字信号分类精度差,导致关键信息的丢失。为了提高传感数据的可靠性和有效性,提出基于混合神经网络的多维视觉传感信号模式分类方法。结合卷积神经网络(CNN)、循环神经网络(RNN)构建混合神经网络,以更有效地表示多维视觉数据中的特征;其中,卷积神经网络负责对多维的空间信号进行去噪处理并提取特征;循环神经网络负责对时域和频域信号进行特征提取;混合神经网络通过联合训练CNN和RNN各自的参数,以调整其权重,并且结合两者从不同层级提取的特征来实现多维视觉传感信号模式的分类。仿真结果表明,使用所提方法进行分类时,信号光滑度保持在0.9以上,传感信号分类结果与实际结果拟合度较高,有效实现多维视觉传感信号模式分类。 展开更多
关键词 传感器信号处理 信号模式分类 混合神经网络 视觉传感信号 卷积神经网络 循环神经网络 贝塞尔曲线
在线阅读 下载PDF
基于卷积神经网络的抽油机故障诊断 被引量:5
15
作者 吴昊臻 许燕 +2 位作者 周建平 谢欣岳 彭东 《燕山大学学报》 北大核心 2024年第1期30-38,共9页
抽油机故障诊断对于保障油气田的稳定运行至关重要.针对已有基于深度学习的故障诊断模型参数量大导致应用范围受限的问题提出一种基于空洞卷积和惩罚机制的卷积神经网络模型.该模型在浅层神经网络部署不同空洞卷积率的空洞残差模块高效... 抽油机故障诊断对于保障油气田的稳定运行至关重要.针对已有基于深度学习的故障诊断模型参数量大导致应用范围受限的问题提出一种基于空洞卷积和惩罚机制的卷积神经网络模型.该模型在浅层神经网络部署不同空洞卷积率的空洞残差模块高效获取示功图轮廓特征的同时降低了模型参数量.其次将惩罚机制融入Softmax损失函数增强模型诊断气体影响等难分样本的故障准确率.采用抽油机实况数据集进行实验验证结果表明该模型参数量为0.94 M浮点型计算量为165.24 M.与MobileNetV3相比改进后的算法模型在准确率同为96.6%的前提下参数量减少了3.30 M浮点型计算量减少了52.22 M更易部署在资源受限的故障诊断平台. 展开更多
关键词 卷积神经网络 抽油机 故障诊断 空洞卷积 损失函数
在线阅读 下载PDF
一种针对边缘设备高效部署的神经网络优化框架
16
作者 李裕 赵贝宁 +1 位作者 曹姗 姜之源 《工业控制计算机》 2025年第3期40-42,共3页
得益于优秀的特征提取能力,各类卷积神经网络模型广泛应用于多个领域。在越来越高识别精度要求下,网络模型的参数量大幅增加,然而边缘设备的计算资源、存储资源往往有诸多限制,因此需要研究针对边缘设备部署的模型优化方法。提出了一种... 得益于优秀的特征提取能力,各类卷积神经网络模型广泛应用于多个领域。在越来越高识别精度要求下,网络模型的参数量大幅增加,然而边缘设备的计算资源、存储资源往往有诸多限制,因此需要研究针对边缘设备部署的模型优化方法。提出了一种针对边缘设备高效部署的神经网络优化框架,可以对多种神经网络模型进行灵活剪枝与量化。 展开更多
关键词 剪枝 混合粒度 卷积神经网络 量化
在线阅读 下载PDF
基于深度卷积神经网络的人脸识别算法研究与分析
17
作者 尹向兵 赵盼 马小琴 《池州学院学报》 2024年第6期13-16,共4页
在海量信息中精准定位并关注所需的关键信息,可以借鉴从选择性视觉注意力机制到深度学习中注意力机制的扩展理念。为了在不同光照、姿态、表情、年龄、模糊度及采集角度等各种复杂环境下提升人脸识别的准确性,文章提出基于深度卷积神经... 在海量信息中精准定位并关注所需的关键信息,可以借鉴从选择性视觉注意力机制到深度学习中注意力机制的扩展理念。为了在不同光照、姿态、表情、年龄、模糊度及采集角度等各种复杂环境下提升人脸识别的准确性,文章提出基于深度卷积神经网络的人脸识别方法。该方法特别针对动态表情、光照变化和多场景下的识别难题,通过引入混合注意力机制,充分提取人脸图像的关键特征区域,使网络能够自动减少对冗余信息的关注,强化对有效特征的学习能力。此外,通过全局平均池化处理网络提取的高维语义特征,有效控制网络参数规模,防止模型对训练数据的过拟合,从而实现高效的人脸识别。 展开更多
关键词 深度卷积神经网络 AttFaceNet 混合注意力 人脸识别
在线阅读 下载PDF
基于内嵌物理知识卷积神经网络的电力系统暂态稳定评估 被引量:2
18
作者 陆旭 张理寅 +2 位作者 李更丰 别朝红 段超 《电力系统自动化》 EI CSCD 北大核心 2024年第9期107-119,共13页
针对现有数据驱动的电力系统暂态评估方法依赖大规模数据集且可解释性不足的问题,文中将物理知识嵌入传统数据驱动方法,提出一种基于内嵌物理知识卷积神经网络的电力系统暂态稳定评估方法。该方法考虑大规模风电并网的电力系统,将电力... 针对现有数据驱动的电力系统暂态评估方法依赖大规模数据集且可解释性不足的问题,文中将物理知识嵌入传统数据驱动方法,提出一种基于内嵌物理知识卷积神经网络的电力系统暂态稳定评估方法。该方法考虑大规模风电并网的电力系统,将电力系统暂态稳定物理方程内嵌至神经网络损失函数,通过神经网络直接逼近物理过程,使输出结果满足物理规律,提高暂态稳定评估的可靠性与可解释性。通过数据与知识双驱动,所提方法不依赖大规模训练数据集,依然具有较好的鲁棒性与泛化能力。此外,所提方法通过卷积神经网络进行特征提取与降维,解决拓扑数据无法直接作为神经网络输入的难题。在含风机的IEEE 9节点和IEEE 39节点测试系统上的实验结果表明,所提方法在准确率、计算效率、泛化能力等方面相较现有方法有显著提升。 展开更多
关键词 内嵌物理知识卷积神经网络 知识-数据混合驱动 功角 暂态稳定性 机器学习 可解释性
在线阅读 下载PDF
基于注意力机制多尺度卷积神经网络的轴承故障诊断 被引量:1
19
作者 孙俊静 顾幸生 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期247-256,共10页
提出了基于注意力机制的多尺度卷积神经网络(Multi-scale and Attentive Convolutional Neural Network,MACNN)进行轴承故障分类,该模型以一维Resnet18网络结构为主体,卷积模块采用残差模块和空洞卷积并行方式以达到扩大感受野、避免特... 提出了基于注意力机制的多尺度卷积神经网络(Multi-scale and Attentive Convolutional Neural Network,MACNN)进行轴承故障分类,该模型以一维Resnet18网络结构为主体,卷积模块采用残差模块和空洞卷积并行方式以达到扩大感受野、避免特征信息丢失的目的,同时利用注意力机制可以自动提取有用特征的能力,将模型提取特征作为输入送入注意力机制模块,进一步提高模型故障分类能力。此外,采用边界平衡生成对抗网络(Boundary Equilibrium Generative Adversarial Networks,BEGAN)模型对故障数据增强,改变不平衡数据集的比例,增加数据集样本数量,降低MACNN模型的过拟合,提高诊断的准确率。在帕德博恩轴承数据集(Paderborn University Dataset,PU)上验证MACNN模型,实验结果表明,该模型在特征提取和故障分类方面都表现出了良好的性能,优于当前主流模型。 展开更多
关键词 故障诊断 卷积神经网络 注意力机制 空洞卷积 BEGAN
在线阅读 下载PDF
基于卷积神经网络-长短期记忆神经网络模型利用光学体积描记术重建动脉血压波信号 被引量:1
20
作者 吴佳泽 梁昊 陈明 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2024年第2期447-458,共12页
目的直接动脉血压(arterial blood pressure,ABP)连续监测是侵入式的,传统袖带式的间接血压测量法无法实现连续监测。既往利用光学体积描记术(photoplethysmography,PPG)实现了连续无创血压监测,但其为收缩压和舒张压的离散值,而非ABP... 目的直接动脉血压(arterial blood pressure,ABP)连续监测是侵入式的,传统袖带式的间接血压测量法无法实现连续监测。既往利用光学体积描记术(photoplethysmography,PPG)实现了连续无创血压监测,但其为收缩压和舒张压的离散值,而非ABP波的连续值,本研究期望基于卷积神经网络-长短期记忆神经网络(CNN-LSTM)利用PPG信号波重建ABP波信号,实现连续无创血压监测。方法构建CNN-LSTM混合神经网络模型,利用重症监护医学信息集(medical information mart for intensive care,MIMIC)中的PPG与ABP波同步记录信号数据,将PPG信号波经预处理降噪、归一化、滑窗分割后输入该模型,重建与之同步对应的ABP波信号。结果使用窗口长度312的CNN-LSTM神经网络时,重建ABP值与实际ABP值间误差最小,平均绝对误差(mean absolute error,MAE)和均方根误差(root mean square error,RMSE)分别为2.79 mmHg和4.24 mmHg,余弦相似度最大,重建ABP值与实际ABP值一致性和相关性情况良好,符合美国医疗器械促进协会(Association for the Advancement of Medical Instrumentation,AAMI)标准。结论CNN-LSTM混合神经网络可利用PPG信号波重建ABP波信号,实现连续无创血压监测。 展开更多
关键词 连续无创血压监测 容积脉搏波 动脉血压波 卷积神经网络 长短期记忆神经网络 混合神经网络
在线阅读 下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部