期刊文献+
共找到304篇文章
< 1 2 16 >
每页显示 20 50 100
一种基于混合量子卷积神经网络的恶意代码检测方法
1
作者 熊其冰 苗启广 +2 位作者 杨天 袁本政 费洋扬 《计算机科学》 北大核心 2025年第3期385-390,共6页
量子计算是基于量子力学的全新计算模式,具有远超经典计算的强大并行计算能力。混合量子卷积神经网络结合了量子计算和经典卷积神经网络的双重优势,逐渐成为量子机器学习领域的研究热点之一。当前,恶意代码规模依然呈高速增长态势,检测... 量子计算是基于量子力学的全新计算模式,具有远超经典计算的强大并行计算能力。混合量子卷积神经网络结合了量子计算和经典卷积神经网络的双重优势,逐渐成为量子机器学习领域的研究热点之一。当前,恶意代码规模依然呈高速增长态势,检测模型越来越复杂,参数量越来越大,迫切需要一种高效轻量型的检测模型。为此,设计了一种混合量子卷积神经网络模型,将量子计算融入经典卷积神经网络,以提高模型的计算效率。该模型包含量子卷积层、池化层和经典全连接层。量子卷积层采用低深度强纠缠轻量型的参数化量子线路实现,仅使用两类量子门:量子旋转门Ry和受控非门CNOT(controlled-NOT),并仅使用两量子比特实现卷积计算。池化层基于经典计算和量子计算实现了3种池化方法。在Google TensorFlow Quantum上进行了模拟实验。实验结果显示,所提模型在恶意代码公开数据集DataCon2020和Ember的分类性能(accuracy,F1-score)分别达到了(97.75%,97.71%)和(94.65%,94.78%),均有明显提升。 展开更多
关键词 量子计算 量子机器学习 混合量子卷积神经网络 恶意代码检测
在线阅读 下载PDF
基于卷积时空混合神经网络的剩余使用寿命预测
2
作者 刘澳龙 唐向红 +1 位作者 陆见光 王涛 《组合机床与自动化加工技术》 北大核心 2025年第4期1-7,共7页
针对当前剩余使用寿命(remaining useful life,RUL)预测方法侧重于捕捉数据的时间依赖,忽略多传感器间的空间关系问题,提出了一种卷积时空混合神经网络(convolutional spatio-temporal hybrid neural network,CSTHNN)用于提取多传感器... 针对当前剩余使用寿命(remaining useful life,RUL)预测方法侧重于捕捉数据的时间依赖,忽略多传感器间的空间关系问题,提出了一种卷积时空混合神经网络(convolutional spatio-temporal hybrid neural network,CSTHNN)用于提取多传感器时间序列数据的时空特征用于RUL预测。CSTHNN利用卷积神经网络的卷积层感知相邻特征间的空间关系并提取传感器间的空间特征。通过位置编码以记忆时间依赖信息,并使用多头自注意力机制提取时间特征。最后将提取到的时空特征进行非线性变换,映射为RUL预测结果。通过在C-MAPSS数据集上的实验对CSTHNN进行了全面的分析和验证,表明了在RUL预测上提取空间特征的重要性以及该方法优秀的性能。 展开更多
关键词 剩余使用寿命 时空特征 卷积神经网络 混合神经网络
在线阅读 下载PDF
基于粒子群优化算法的量子卷积神经网络
3
作者 张嘉雯 蔡彬彬 林崧 《量子电子学报》 北大核心 2025年第1期123-135,共13页
针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在... 针对当前量子卷积神经网络模型中参数化量子电路缺乏自适应目标选择策略的问题,提出了一种基于粒子群优化算法自动优化电路的量子卷积神经网络模型。该模型通过将量子电路编码为粒子,并利用粒子群优化算法对电路进行优化,从而搜索出在图像分类任务上表现优异的电路结构。基于Fashion MNIST和MNIST标准数据集的仿真实验表明,该模型具有较强的学习能力和良好的泛化性能,准确率分别可达94.7%和99.05%。相较于现有量子卷积神经网络模型,平均分类精度最高分别提升了4.14%和1.43%。 展开更多
关键词 量子光学 量子卷积神经网络 粒子群优化算法 量子机器学习 参数化量子电路
在线阅读 下载PDF
基于量子卷积神经网络的ARX分组密码区分器
4
作者 秦广雪 李丽莎 《信息网络安全》 北大核心 2025年第3期467-477,共11页
随着量子计算机的发展,量子神经网络技术不断取得新突破。尽管当前量子计算环境受限,但探索量子神经网络的潜在应用对未来科学技术发展具有重要意义。量子卷积神经网络结合量子计算的优势和神经网络强大的特征提取能力,在二分类任务上... 随着量子计算机的发展,量子神经网络技术不断取得新突破。尽管当前量子计算环境受限,但探索量子神经网络的潜在应用对未来科学技术发展具有重要意义。量子卷积神经网络结合量子计算的优势和神经网络强大的特征提取能力,在二分类任务上表现优异。文章提出一种量子卷积神经区分器,数据特征之间不分块而是作为一个整体编码到量子电路,然后训练参数化量子卷积电路。以SPECK-32为例,使用8个量子比特运行5轮的准确率为76.8%,超越了同等资源条件下的经典区分器,并成功运行到第6轮。文章对比了卷积电路和硬件高效Ansatz作为训练电路的量子神经区分器,结果表明前者具有更高的效率。此外,文章所提区分器成功运行了减轮的Speckey、LAX32、SIMON-32和SIMECK-32算法。最后,分析了影响量子卷积神经区分器性能的因素。 展开更多
关键词 量子卷积神经网络 量子计算 分组密码 区分器
在线阅读 下载PDF
基于优化广义S变换和混合输入神经网络的电能质量扰动识别
5
作者 刘海涛 武祥 +3 位作者 张淑清 刘大鹏 刘勇 穆勇 《计量学报》 北大核心 2025年第1期53-61,共9页
利用广义S变换时频矩阵中时间最大幅值曲线和频率最大幅值曲线与电能质量信号幅值和频谱包络线的相关性,提出优化广义S变换的方法对高斯窗函数参数进行自适应选取,充分保留了电能质量扰动的幅值和频率特征。然后提出一种混合输入神经网... 利用广义S变换时频矩阵中时间最大幅值曲线和频率最大幅值曲线与电能质量信号幅值和频谱包络线的相关性,提出优化广义S变换的方法对高斯窗函数参数进行自适应选取,充分保留了电能质量扰动的幅值和频率特征。然后提出一种混合输入神经网络框架,分别对原始时间序列和优化广义S变换得到的时频矩阵进行自动特征提取,最后将2种输入提取到的特征进行组合并利用全连接层来识别扰动类型。通过对包含26种电能质量扰动类型的仿真数据集进行训练和验证,结果表明所述方法对扰动识别准确率为99.77%;然后对2种实际电网扰动信号进行测试,对扰动识别准确率仍然能达到92.5%,高于传统单一输入神经网络。 展开更多
关键词 电学计量 电能质量 扰动识别 S变换 卷积神经网络 混合输入
在线阅读 下载PDF
基于空间域图像生成和混合卷积神经网络的配电网故障选线方法 被引量:5
6
作者 郭威 史运涛 《电网技术》 EI CSCD 北大核心 2024年第3期1311-1321,共11页
传统的配电网故障选线方法大多基于一维零序电流序列构建故障诊断模型,单一的诊断模型往往限制了故障特征的深层挖掘。为了提高故障选线的准确率,提出一种基于空间域图像和混合卷积神经网络的配电网故障选线方法。首先,利用优化的降噪... 传统的配电网故障选线方法大多基于一维零序电流序列构建故障诊断模型,单一的诊断模型往往限制了故障特征的深层挖掘。为了提高故障选线的准确率,提出一种基于空间域图像和混合卷积神经网络的配电网故障选线方法。首先,利用优化的降噪光滑模型对零序电流信号进行降噪处理,减少外界环境的电磁干扰。其次,利用对称希尔伯特变换将一维时域信号转成二维空间域图像,图像的颜色、形状和纹理特征能够充分反映当前系统的运行状态。最后,将一维时域信号和二维空间域图像同步作为混合卷积神经网络的输入,充分挖掘系统的故障特征,利用Sigmoid函数实现故障选线。在辐射状配电网、IEEE-13节点模型、IEEE-34节点、StarSim仿真平台上模型上进行了实验验证。实验结果表明,该选线方法可以有效克服传统方法过度依赖主观特征选择、抗噪性能差等问题,能够在高阻接地、采样时间不同步、两点接地故障等极端情况下可靠地筛选出故障线路。 展开更多
关键词 故障选线 对称希尔伯特变换 混合卷积神经网络 空间域图像生成 优化的降噪光滑模型
在线阅读 下载PDF
基于混合卷积神经网络的多特征负荷预测方法研究 被引量:2
7
作者 邹晴 李乐 +5 位作者 柳楠 李超然 曹竞元 于金骁 朱霄珣 于淼 《电网与清洁能源》 CSCD 北大核心 2024年第9期54-62,共9页
针对负荷预测任务中准确性、稳定性和环境因素适应性的挑战,提出了一种基于混合卷积神经网络的电力负荷短期预测方法。提出了基于一维卷积神经网络(1D convolutional neural network,1D-CNN)的多尺度特征融合方法,通过融合不同尺度的特... 针对负荷预测任务中准确性、稳定性和环境因素适应性的挑战,提出了一种基于混合卷积神经网络的电力负荷短期预测方法。提出了基于一维卷积神经网络(1D convolutional neural network,1D-CNN)的多尺度特征融合方法,通过融合不同尺度的特征来捕捉负荷变化的趋势,提高了对负荷突变和复杂模式的识别能力;针对多种环境特征因素对电负荷影响的问题,设计了基于2D-CNN的多特征因素学习方法,提高了模型对环境因素与负荷间复杂关系的建模能力;构建了混合网络模型,通过对1D-CNN和2D-CNN的特征信息进行深度特征融合和信息传播,实现了有效关联时空特征的综合性负荷预测方法。开展了具体算例分析研究,通过分析参数优化和融合学习对模型精度和效率的影响,并与经典模型进行对比,结果显示所提模型的均方根误差(root mean squared error,RMSE)为36.3,平均绝对误差(mean absolute error,MAE)为5.34,平均绝对百分比误差(mean absolute percentage error,MAPE)为1.02%,有效提高了负荷预测的准确性和鲁棒性。 展开更多
关键词 负荷预测 混合卷积神经网络 多尺度特征融合 多特征因素 融合学习
在线阅读 下载PDF
基于卷积神经网络的高效量子态层析方法 被引量:1
8
作者 孙乾 蒋楠 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期325-330,共6页
通过系统梳理多种量子态层析技术的重构算法,并结合MATLAB数值模拟,比较并分析了线性重构与回归估计、极大似然估计,以及基于深度神经网络量子态层析方法的重构效果.结果表明:基于卷积神经网络重构算法在1~3量子比特时,能够用较短时间... 通过系统梳理多种量子态层析技术的重构算法,并结合MATLAB数值模拟,比较并分析了线性重构与回归估计、极大似然估计,以及基于深度神经网络量子态层析方法的重构效果.结果表明:基于卷积神经网络重构算法在1~3量子比特时,能够用较短时间均实现>99.5%的保真度;相较于其他经典重构算法,基于卷积神经网络重构算法在算法复杂度及保真度上具有显著优势;又因其对复杂模型具有较好的拟合能力,且辅助解决了估计密度矩阵中出现负本征值的问题,使得重构所得估计密度矩阵全部具有物理意义. 展开更多
关键词 量子态层析 密度矩阵 卷积神经网络 保真度 负本征值
在线阅读 下载PDF
基于CNN-LSTM混合神经网络的高速铁路地震响应预测 被引量:3
9
作者 张学兵 谢啸楠 +1 位作者 王礼 吴晗 《湘潭大学学报(自然科学版)》 CAS 2024年第1期1-13,共13页
为了更好地挖掘高速铁路在地震时的响应信息,提高光纤光栅监测的效率及预测精度,该文针对地震响应数据的时序性及非线性的特点,提出卷积神经网络(CNN)和长短期记忆(LSTM)网络的混合神经网络模型预测方法.通过在高速铁路简支梁桥上布设... 为了更好地挖掘高速铁路在地震时的响应信息,提高光纤光栅监测的效率及预测精度,该文针对地震响应数据的时序性及非线性的特点,提出卷积神经网络(CNN)和长短期记忆(LSTM)网络的混合神经网络模型预测方法.通过在高速铁路简支梁桥上布设准分布式光纤光栅采集地震时轨道板、钢轨、底座板、箱梁的响应数据,在每根光纤上布置7个光栅,利用两边光栅的响应数据预测中间点的光栅响应,将采集位置、历史数据及地震波形等信息作为特征图输入.利用CNN提取特征,再将提前提取出来的特征数据以时序方式作为LSTM网络的输入数据,最后LSTM网络进行地震应变响应预测.实验结果表明,LSTM网络在3层时效果最好,CNN-LSTM方法具有较高的预测精度,根均平方误差(R_(RMSE))、平均绝对误差(R_(MAE))、决定系数(R^(2))分别达到了0.3753、0.2968、0.9371. 展开更多
关键词 准分布式光纤光栅 振动台试验 地震响应 卷积神经网络-长短期记忆网络混合模型
在线阅读 下载PDF
“认知负荷理论”在职业院校混合式教学模式中的应用——以“卷积神经网络”内容为例
10
作者 唐亮 《计算机应用文摘》 2024年第19期1-3,共3页
认知负荷理论是研究教学过程的重要理论。将这一理论与混合式教学模式相结合,可以有效优化教学过程,通过减少学生在学习时产生的内部和外部认知负荷,提升关联认知负荷,从而优化学生的学习效果。
关键词 认知负荷理论 混合式教学 卷积神经网络
在线阅读 下载PDF
基于混合神经网络的多维视觉传感信号模式分类
11
作者 陈威 蔡奕侨 《传感技术学报》 CAS CSCD 北大核心 2024年第6期1035-1040,共6页
传感器采集的数字信号分类精度差,导致关键信息的丢失。为了提高传感数据的可靠性和有效性,提出基于混合神经网络的多维视觉传感信号模式分类方法。结合卷积神经网络(CNN)、循环神经网络(RNN)构建混合神经网络,以更有效地表示多维视觉... 传感器采集的数字信号分类精度差,导致关键信息的丢失。为了提高传感数据的可靠性和有效性,提出基于混合神经网络的多维视觉传感信号模式分类方法。结合卷积神经网络(CNN)、循环神经网络(RNN)构建混合神经网络,以更有效地表示多维视觉数据中的特征;其中,卷积神经网络负责对多维的空间信号进行去噪处理并提取特征;循环神经网络负责对时域和频域信号进行特征提取;混合神经网络通过联合训练CNN和RNN各自的参数,以调整其权重,并且结合两者从不同层级提取的特征来实现多维视觉传感信号模式的分类。仿真结果表明,使用所提方法进行分类时,信号光滑度保持在0.9以上,传感信号分类结果与实际结果拟合度较高,有效实现多维视觉传感信号模式分类。 展开更多
关键词 传感器信号处理 信号模式分类 混合神经网络 视觉传感信号 卷积神经网络 循环神经网络 贝塞尔曲线
在线阅读 下载PDF
一种针对边缘设备高效部署的神经网络优化框架
12
作者 李裕 赵贝宁 +1 位作者 曹姗 姜之源 《工业控制计算机》 2025年第3期40-42,共3页
得益于优秀的特征提取能力,各类卷积神经网络模型广泛应用于多个领域。在越来越高识别精度要求下,网络模型的参数量大幅增加,然而边缘设备的计算资源、存储资源往往有诸多限制,因此需要研究针对边缘设备部署的模型优化方法。提出了一种... 得益于优秀的特征提取能力,各类卷积神经网络模型广泛应用于多个领域。在越来越高识别精度要求下,网络模型的参数量大幅增加,然而边缘设备的计算资源、存储资源往往有诸多限制,因此需要研究针对边缘设备部署的模型优化方法。提出了一种针对边缘设备高效部署的神经网络优化框架,可以对多种神经网络模型进行灵活剪枝与量化。 展开更多
关键词 剪枝 混合粒度 卷积神经网络 量化
在线阅读 下载PDF
基于深度卷积神经网络的人脸识别算法研究与分析
13
作者 尹向兵 赵盼 马小琴 《池州学院学报》 2024年第6期13-16,共4页
在海量信息中精准定位并关注所需的关键信息,可以借鉴从选择性视觉注意力机制到深度学习中注意力机制的扩展理念。为了在不同光照、姿态、表情、年龄、模糊度及采集角度等各种复杂环境下提升人脸识别的准确性,文章提出基于深度卷积神经... 在海量信息中精准定位并关注所需的关键信息,可以借鉴从选择性视觉注意力机制到深度学习中注意力机制的扩展理念。为了在不同光照、姿态、表情、年龄、模糊度及采集角度等各种复杂环境下提升人脸识别的准确性,文章提出基于深度卷积神经网络的人脸识别方法。该方法特别针对动态表情、光照变化和多场景下的识别难题,通过引入混合注意力机制,充分提取人脸图像的关键特征区域,使网络能够自动减少对冗余信息的关注,强化对有效特征的学习能力。此外,通过全局平均池化处理网络提取的高维语义特征,有效控制网络参数规模,防止模型对训练数据的过拟合,从而实现高效的人脸识别。 展开更多
关键词 深度卷积神经网络 AttFaceNet 混合注意力 人脸识别
在线阅读 下载PDF
基于内嵌物理知识卷积神经网络的电力系统暂态稳定评估 被引量:2
14
作者 陆旭 张理寅 +2 位作者 李更丰 别朝红 段超 《电力系统自动化》 EI CSCD 北大核心 2024年第9期107-119,共13页
针对现有数据驱动的电力系统暂态评估方法依赖大规模数据集且可解释性不足的问题,文中将物理知识嵌入传统数据驱动方法,提出一种基于内嵌物理知识卷积神经网络的电力系统暂态稳定评估方法。该方法考虑大规模风电并网的电力系统,将电力... 针对现有数据驱动的电力系统暂态评估方法依赖大规模数据集且可解释性不足的问题,文中将物理知识嵌入传统数据驱动方法,提出一种基于内嵌物理知识卷积神经网络的电力系统暂态稳定评估方法。该方法考虑大规模风电并网的电力系统,将电力系统暂态稳定物理方程内嵌至神经网络损失函数,通过神经网络直接逼近物理过程,使输出结果满足物理规律,提高暂态稳定评估的可靠性与可解释性。通过数据与知识双驱动,所提方法不依赖大规模训练数据集,依然具有较好的鲁棒性与泛化能力。此外,所提方法通过卷积神经网络进行特征提取与降维,解决拓扑数据无法直接作为神经网络输入的难题。在含风机的IEEE 9节点和IEEE 39节点测试系统上的实验结果表明,所提方法在准确率、计算效率、泛化能力等方面相较现有方法有显著提升。 展开更多
关键词 内嵌物理知识卷积神经网络 知识-数据混合驱动 功角 暂态稳定性 机器学习 可解释性
在线阅读 下载PDF
基于卷积神经网络-长短期记忆神经网络模型利用光学体积描记术重建动脉血压波信号 被引量:1
15
作者 吴佳泽 梁昊 陈明 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2024年第2期447-458,共12页
目的直接动脉血压(arterial blood pressure,ABP)连续监测是侵入式的,传统袖带式的间接血压测量法无法实现连续监测。既往利用光学体积描记术(photoplethysmography,PPG)实现了连续无创血压监测,但其为收缩压和舒张压的离散值,而非ABP... 目的直接动脉血压(arterial blood pressure,ABP)连续监测是侵入式的,传统袖带式的间接血压测量法无法实现连续监测。既往利用光学体积描记术(photoplethysmography,PPG)实现了连续无创血压监测,但其为收缩压和舒张压的离散值,而非ABP波的连续值,本研究期望基于卷积神经网络-长短期记忆神经网络(CNN-LSTM)利用PPG信号波重建ABP波信号,实现连续无创血压监测。方法构建CNN-LSTM混合神经网络模型,利用重症监护医学信息集(medical information mart for intensive care,MIMIC)中的PPG与ABP波同步记录信号数据,将PPG信号波经预处理降噪、归一化、滑窗分割后输入该模型,重建与之同步对应的ABP波信号。结果使用窗口长度312的CNN-LSTM神经网络时,重建ABP值与实际ABP值间误差最小,平均绝对误差(mean absolute error,MAE)和均方根误差(root mean square error,RMSE)分别为2.79 mmHg和4.24 mmHg,余弦相似度最大,重建ABP值与实际ABP值一致性和相关性情况良好,符合美国医疗器械促进协会(Association for the Advancement of Medical Instrumentation,AAMI)标准。结论CNN-LSTM混合神经网络可利用PPG信号波重建ABP波信号,实现连续无创血压监测。 展开更多
关键词 连续无创血压监测 容积脉搏波 动脉血压波 卷积神经网络 长短期记忆神经网络 混合神经网络
在线阅读 下载PDF
基于量子卷积神经网络的图像识别新模型 被引量:5
16
作者 范兴奎 刘广哲 +3 位作者 王浩文 马鸿洋 李伟 王淑梅 《电子科技大学学报》 EI CAS CSCD 北大核心 2022年第5期642-650,共9页
为了解决卷积神经网络对内存和时间效率要求越来越高的问题,提出一种面向数字图像分类的新模型,该模型为基于强纠缠参数化线路的量子卷积神经网络。首先对经典图像进行预处理和量子比特编码,提取图像的特征信息,并将其制备为量子态作为... 为了解决卷积神经网络对内存和时间效率要求越来越高的问题,提出一种面向数字图像分类的新模型,该模型为基于强纠缠参数化线路的量子卷积神经网络。首先对经典图像进行预处理和量子比特编码,提取图像的特征信息,并将其制备为量子态作为量子卷积神经网络模型的输入。通过设计模型量子卷积层、量子池化层、量子全连接层结构,高效提炼主要特征信息,最后对模型输出执行Z基测量,根据期望值完成图像分类。实验数据集为MNIST数据,{0,1}分类和{2,7}分类准确率均达到了100%。对比结果表明,采用平均池化下采样的三层网络结构的QCNN模型具有更高的测试精度。 展开更多
关键词 量子计算 图像分类 量子卷积神经网络 参数化量子电路
在线阅读 下载PDF
基于混合型复数域卷积神经网络的三维转动舰船目标识别 被引量:11
17
作者 张云 化青龙 +1 位作者 姜义成 徐丹 《电子学报》 EI CAS CSCD 北大核心 2022年第5期1042-1049,共8页
在较高海情下,由于舰船目标处于随机摆动的非平稳运动状态,常规合成孔径雷达(Synthetic Aperture Radar,SAR)成像处理会使得目标散焦、方位模糊,从而导致三维转动舰船目标识别准确率低.本文提出一种混合型复数域卷积神经网络(Mix-type C... 在较高海情下,由于舰船目标处于随机摆动的非平稳运动状态,常规合成孔径雷达(Synthetic Aperture Radar,SAR)成像处理会使得目标散焦、方位模糊,从而导致三维转动舰船目标识别准确率低.本文提出一种混合型复数域卷积神经网络(Mix-type Complex-Valued Convolutional Neural Network,Mix-CV-CNN),并推导Mix-CV-CNN前向传播与反向传播算法.三维转动舰船目标经过SAR成像处理后存在剩余相位信息,Mix-CV-CNN能充分利用SAR复数域图像的幅度和相位信息,在不进行目标重聚焦的情况下,较好完成SAR复杂运动舰船目标的识别.实验表明,Mix-CV-CNN相较于具有相同自由度的实数域卷积神经网络(Real-Valued Convolutional Neural Network,RV-CNN)识别性能有所提高,实测数据识别平均准确率提高3.85%. 展开更多
关键词 合成孔径雷达 复数域卷积神经网络 三维转动 目标散焦 舰船目标识别 混合型复数域卷积神经网络
在线阅读 下载PDF
量子混合蛙跳算法在过程神经网络优化中的应用 被引量:5
18
作者 张强 许少华 刘丽杰 《信号处理》 CSCD 北大核心 2013年第8期1003-1011,共9页
针对基于正交基展开的过程神经元网络参数较多,基函数展开项数和网络结构难以确定,传统BP算法不易收敛的问题,结合量子理论提出一种量子混合蛙跳算法,用于过程神经元网络的训练。该算法利用量子位的Bloch球面坐标将网络结构、网络参数... 针对基于正交基展开的过程神经元网络参数较多,基函数展开项数和网络结构难以确定,传统BP算法不易收敛的问题,结合量子理论提出一种量子混合蛙跳算法,用于过程神经元网络的训练。该算法利用量子位的Bloch球面坐标将网络结构、网络参数和展开项数统一编码,提出沿球面上经过两点间的劣弧路径进行旋转的方法来同时更新三个优化解,并利用Hadamard门完成个体变异避免早熟,进而有效扩展解空间的搜索范围。以抽油机故障诊断和网络流量预测为例,验证了算法的有效性。 展开更多
关键词 过程神经网络 量子计算 混合蛙跳算法 学习算法
在线阅读 下载PDF
基于聚合混合模态分解和时序卷积神经网络的综合能源系统负荷修正预测 被引量:21
19
作者 李文武 张鹏宇 +2 位作者 石强 冯晨洋 李丹 《电网技术》 EI CSCD 北大核心 2022年第9期3345-3353,共9页
为增强综合能源系统负荷精细化分解水平,充分利用误差信息以进一步提升预测性能,提出一种基于聚合混合模态分解和时序卷积神经网络(temporal convolutional network,TCN)的综合能源系统负荷修正预测框架。首先,采用改进完全集合经验模... 为增强综合能源系统负荷精细化分解水平,充分利用误差信息以进一步提升预测性能,提出一种基于聚合混合模态分解和时序卷积神经网络(temporal convolutional network,TCN)的综合能源系统负荷修正预测框架。首先,采用改进完全集合经验模态分解对电、冷和热负荷初步分解处理,随后利用变分模态分解对具有强复杂性的子序列进一步分解。然后,依据最大信息系数(maximum information coefficient,MIC)分析多元负荷的耦合特性并通过多元相空间重构(multivariate phase space reconstruction,MPSR)丰富特征信息。最后,构建基于TCN的修正预测模型。以校园综合能源系统算例对比不同预测模型,结果显示所提修正预测框架的电、冷和热负荷预测均具有较低的平均绝对百分比误差,有效解决了预测中模态分解的模态混叠以及模态高频分量问题,实现预测误差修正。 展开更多
关键词 综合能源系统负荷预测 混合模态分解 最大信息系数 时序卷积神经网络 误差修正
在线阅读 下载PDF
基于卷积神经网络的撞击流反应器浓度场混合特性 被引量:2
20
作者 张建伟 许蕊 +2 位作者 张忠闯 董鑫 冯颖 《化工进展》 EI CAS CSCD 北大核心 2023年第2期658-668,共11页
基于PLIF测试技术结合卷积神经网络技术提出混合性能预测方法,分析水平对置撞击流反应器浓度场混合特性,能准确预测其内部浓度场的混合均匀度及混合时间。基于卷积神经网络构建了混合性能预测模型,利用水平对置撞击流反应器浓度场实验... 基于PLIF测试技术结合卷积神经网络技术提出混合性能预测方法,分析水平对置撞击流反应器浓度场混合特性,能准确预测其内部浓度场的混合均匀度及混合时间。基于卷积神经网络构建了混合性能预测模型,利用水平对置撞击流反应器浓度场实验数据对构建的模型进行有监督地训练并进行预测,预测结果显示对混合均匀度的预测准确率达95%,计算效率提高了99.99%。为更好地理解混合性能预测模型对混合均匀度的预测机理,本文对其卷积层输出进行可视化处理,通过功率谱分析卷积核的响应给出了撞击流反应器浓度场特征提取的物理解释。最后利用预测模型搭建混合均匀度快速获取系统并应用于撞击流混合特性研究。所提出的基于卷积神经网络的预测模型可以有效分析水平对置撞击流反应器的混合特性,预测模型可靠、适用范围广,为深度学习算法应用于撞击流领域提供了方案经验。 展开更多
关键词 撞击流反应器 卷积神经网络 混合 浓度场 预测
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部