针对不同型号的智能移动终端设备,由软件和硬件的异构性而导致不同设备在同一采集点处采集到的同一蓝牙源接入点的蓝牙信号强度观测值存在显著差异而影响定位精度的问题,该文提出了一种基于混沌麻雀搜索算法优化BP神经网络模型的室内蓝...针对不同型号的智能移动终端设备,由软件和硬件的异构性而导致不同设备在同一采集点处采集到的同一蓝牙源接入点的蓝牙信号强度观测值存在显著差异而影响定位精度的问题,该文提出了一种基于混沌麻雀搜索算法优化BP神经网络模型的室内蓝牙RSSI(received signal strength indicator)标定算法.该标定算法应用混沌麻雀搜索算法的全局搜索能力和快速收敛性来帮助BPNN模型选取最优的初始权值和阈值.实验结果表明:该标定方法得到的平均RSSI误差相较于未标定之前降低了87.6%,有效地降低了软硬件异构性对采集到的蓝牙信号强度观测值的精度.展开更多
文摘针对不同型号的智能移动终端设备,由软件和硬件的异构性而导致不同设备在同一采集点处采集到的同一蓝牙源接入点的蓝牙信号强度观测值存在显著差异而影响定位精度的问题,该文提出了一种基于混沌麻雀搜索算法优化BP神经网络模型的室内蓝牙RSSI(received signal strength indicator)标定算法.该标定算法应用混沌麻雀搜索算法的全局搜索能力和快速收敛性来帮助BPNN模型选取最优的初始权值和阈值.实验结果表明:该标定方法得到的平均RSSI误差相较于未标定之前降低了87.6%,有效地降低了软硬件异构性对采集到的蓝牙信号强度观测值的精度.