In analyzing seismic stability of a slope with upper bound limit analysis method, the slip surface is often assumed as a log-spiral or plane slip surface. However, due to the presence of a weak layer and unfavorable g...In analyzing seismic stability of a slope with upper bound limit analysis method, the slip surface is often assumed as a log-spiral or plane slip surface. However, due to the presence of a weak layer and unfavorable geological structural surface or a bedrock interface with overlying soft strata, the preexisting slip surface of the slope may be irregular and composed of a series of planes rather than strictly logspiral or plane shape. A computational model is developed for analyzing the seismic stability of slopes with pre-existing slip surfaces. This model is based on the upper bound limit analysis method and can consider the effect of anchor bolts. The soil or rock is deemed to follow the Mohr-Coulomb yield criterion. The slope is divided into multiple block elements along the slip surface. According to the displacement compatibility and the associated flow rule, a kinematic velocity field of the slope can be obtained computationally. The proposed model allows not only calculation of the rate of external work owing to the combined effect of self-weight and seismic loading, but also that of the energy dissipation rate caused by the slip surface, interfaces of block elements and anchorage effect of the anchors. Considering a direct relationship between the rate of external work and the energy dissipation rate, the expressions of yield acceleration and permanent displacement of anchored slopes can be derived. Finally, the validity of this proposed model is illustrated by analysis on three typical slopes. The results showed that the proposed model is more easily formulated and does not need to solve complex equations or time consuming iterations compared with previous methods based on the conditions of force equilibrium.展开更多
Earthquake-induced landslides along the Dujiangyan-Yingxiu highway after the Ms 8.0 Wenchuan earthquake in 2008 were investigated. It was found that: (1) slopes were shattered and damaged during the earthquake a...Earthquake-induced landslides along the Dujiangyan-Yingxiu highway after the Ms 8.0 Wenchuan earthquake in 2008 were investigated. It was found that: (1) slopes were shattered and damaged during the earthquake and open tension cracks formed on the tops of the slopes; (2) the upper parts of slopes collapsed and slid, while the lower parts remained basically intact, indicating that the upper parts of slopes would be damaged more heavily than the lower parts during an earthquake. Large-scale shaking table model tests were conducted to study failure behavior of slopes under the Wenchuan seismic wave, which reproduced the process of deformation and failure of slopes. Tension cracks emerged at the top and upper part of model, while the bottom of the model remained intact, consistent with field investigations. Depth of the tension crack at the top of model is 32 cm, i.e., 3.2 m compared to the prototype natural slope with a height of 14 m when the length scale ratio (proto/model) is lo. Acceleration at the top of the slope was almost twice as large as that at the toe when the measured accelerations on shaking table are 4.85 m/s2 and 6.49 m/s2, which means that seismic force at the top of the slope is twice the magnitude of that at the toe. By use of the dynamic-strength-reduction method, numerical simulation was conducted to explore the process and mechanism of formation of the sliding surface, with other quantified information. The earthquake-induced failure surfaces commonly consist of tension cracks and shear zones. Within 5 mfrom the top of the slope, the dynamic sliding surface will be about 1 m shallower than the pseudo-static sliding surface in a horizontal direction when the peak ground acceleration (PGA) is 1 m/s2; the dynamic sliding surface will be about 2 m deeper than the pseudo-static sliding surface in a horizontal direction when the PGA is lo m/sL and the depths of the dynamic sliding surface and the pseudo-static sliding surface will be almost the same when the PGA is 2 m/s2. Based on these findings, it is suggested that the key point of anti-seismic design, as well as for mitigation of post-earthquake, secondary mountain hazards, is to prevent tension cracks from forming in the upper part of the slope. Therefore, the depth of tension cracks in slope surfaces is the key to reinforcement of slopes. The depth of the sliding surface from the pseudo-static method can be a reference for slope reinforcement mitigation.展开更多
To study the grouting reinforcement mechanism in jointed rock slope, first, the theoretical deduction was done to calculate the critical length of slipping if the slope angle is larger than that of joint inclination; ...To study the grouting reinforcement mechanism in jointed rock slope, first, the theoretical deduction was done to calculate the critical length of slipping if the slope angle is larger than that of joint inclination; Second, the numerical calculation model was founded by FLAG^3D, so as to find the stress and deformation responses of rock mass in the state before and after grouting, the analysis results show that the range between the boundary of critical slipping block and the joint plane that passes the slope toe is the effective grouting area (EGA). After excavation, large deformation occurs along the joint plane. After grouting, the displacements of rock particles become uniform and continuous, and large deformations along the joint plane are controlled; the dynamic displacement can re- flect the deformation response of slope during excavation in the state before and after grouting, as well as the shear location of potential slip plane. After grouting, the dynamic displacement of each monitoring point reaches the peak value with very few time steps, which indicate that the parameters of the joint plane, such as strength and stiffness, are improved; the stress field becomes uniform. Tensile area reduces gradually; whole stability of the slope and its ability to resist tensile and shear stress are improved greatly.展开更多
The paper is devoted to a new extension in Gegenbauer wavelet method (GWM) to investigate the transfer of heat and MHD boundary-layer flow of ferrofluids beside a flat plate with velocity slip. A homogenous model st...The paper is devoted to a new extension in Gegenbauer wavelet method (GWM) to investigate the transfer of heat and MHD boundary-layer flow of ferrofluids beside a flat plate with velocity slip. A homogenous model study is conducted in which we assumed the heat transfer and forced convective flow of ferrofluids along a flat plate with a uniform wall heat flux. In the direction of transverse to plate, a magnetic field is imposed. Three various magnetic nanoparticle types including Mn-ZnFe204, CoFe204, Fe3O4 are incorporated inside the base fluid. Two types of base fluids (water and kerosene) with bad thermal conductivity as compared to nanoparticles of solid magnetic have been assumed. The mathematical model is tackled via modified Gegenbauer wavelet method (MGWM). A simulation is accomplished for individual ferrofluid mixture by assuming the prevailing impacts of uniform and slip heat fluxes. The variation of heat transfers and skin friction were also observed at the surface of the plate and we analyzed the better heat transfer for every mixture. Kerosene-based magnetite (Fe304) delivers the better rate of heat transfer at wall due to its association with the kerosene-based Mn-Zn and cobalt ferrites. The slip velocity and magnetic field effects on the temperature, dimensionless velocity, rate of heat transfer and skin friction are examined for various magnetic nanoparticles inside the kerosene oil and water. We observed that the primary influence of magnetic field reduces the dimensionless surface temperature and accelerates the dimensionless velocity as compared to the hydrodynamic case, thus enhancing the rate of heat transfer and skin friction ferrofluids. Moreover, a detailed evaluation of outcomes obtained by MGWM, already published work and numerical RK-4 were found to be in excellent agreement. The error and convergence analysis are presented. Comparison of results,graphical plots, error and convergence analysis reveal the appropriateness of proposed method. The proposed algorithm can be extended for other nonlinear problems.展开更多
基金financially supported by the NSFC-ICIMOD joint project(41761144077)the Light of West“Belt&Road”international cooperation team project of Chinese Academy of Sciences(Su Lijun)+1 种基金the Hundred Talents Program of Chinese Academy of Sciences(Su Lijun)the NSFC(National Natural Science Foundation of China)project(51278397)
文摘In analyzing seismic stability of a slope with upper bound limit analysis method, the slip surface is often assumed as a log-spiral or plane slip surface. However, due to the presence of a weak layer and unfavorable geological structural surface or a bedrock interface with overlying soft strata, the preexisting slip surface of the slope may be irregular and composed of a series of planes rather than strictly logspiral or plane shape. A computational model is developed for analyzing the seismic stability of slopes with pre-existing slip surfaces. This model is based on the upper bound limit analysis method and can consider the effect of anchor bolts. The soil or rock is deemed to follow the Mohr-Coulomb yield criterion. The slope is divided into multiple block elements along the slip surface. According to the displacement compatibility and the associated flow rule, a kinematic velocity field of the slope can be obtained computationally. The proposed model allows not only calculation of the rate of external work owing to the combined effect of self-weight and seismic loading, but also that of the energy dissipation rate caused by the slip surface, interfaces of block elements and anchorage effect of the anchors. Considering a direct relationship between the rate of external work and the energy dissipation rate, the expressions of yield acceleration and permanent displacement of anchored slopes can be derived. Finally, the validity of this proposed model is illustrated by analysis on three typical slopes. The results showed that the proposed model is more easily formulated and does not need to solve complex equations or time consuming iterations compared with previous methods based on the conditions of force equilibrium.
基金supported by 973 Program,Grant No. 2008CB425802National Natural Science Foundation of Chinasupported by the Fundamental Research Funds for the Central Universities (SWJTU09ZT04)
文摘Earthquake-induced landslides along the Dujiangyan-Yingxiu highway after the Ms 8.0 Wenchuan earthquake in 2008 were investigated. It was found that: (1) slopes were shattered and damaged during the earthquake and open tension cracks formed on the tops of the slopes; (2) the upper parts of slopes collapsed and slid, while the lower parts remained basically intact, indicating that the upper parts of slopes would be damaged more heavily than the lower parts during an earthquake. Large-scale shaking table model tests were conducted to study failure behavior of slopes under the Wenchuan seismic wave, which reproduced the process of deformation and failure of slopes. Tension cracks emerged at the top and upper part of model, while the bottom of the model remained intact, consistent with field investigations. Depth of the tension crack at the top of model is 32 cm, i.e., 3.2 m compared to the prototype natural slope with a height of 14 m when the length scale ratio (proto/model) is lo. Acceleration at the top of the slope was almost twice as large as that at the toe when the measured accelerations on shaking table are 4.85 m/s2 and 6.49 m/s2, which means that seismic force at the top of the slope is twice the magnitude of that at the toe. By use of the dynamic-strength-reduction method, numerical simulation was conducted to explore the process and mechanism of formation of the sliding surface, with other quantified information. The earthquake-induced failure surfaces commonly consist of tension cracks and shear zones. Within 5 mfrom the top of the slope, the dynamic sliding surface will be about 1 m shallower than the pseudo-static sliding surface in a horizontal direction when the peak ground acceleration (PGA) is 1 m/s2; the dynamic sliding surface will be about 2 m deeper than the pseudo-static sliding surface in a horizontal direction when the PGA is lo m/sL and the depths of the dynamic sliding surface and the pseudo-static sliding surface will be almost the same when the PGA is 2 m/s2. Based on these findings, it is suggested that the key point of anti-seismic design, as well as for mitigation of post-earthquake, secondary mountain hazards, is to prevent tension cracks from forming in the upper part of the slope. Therefore, the depth of tension cracks in slope surfaces is the key to reinforcement of slopes. The depth of the sliding surface from the pseudo-static method can be a reference for slope reinforcement mitigation.
基金Supported by the National Natural Science Foundation of China (50099620, 40804027)
文摘To study the grouting reinforcement mechanism in jointed rock slope, first, the theoretical deduction was done to calculate the critical length of slipping if the slope angle is larger than that of joint inclination; Second, the numerical calculation model was founded by FLAG^3D, so as to find the stress and deformation responses of rock mass in the state before and after grouting, the analysis results show that the range between the boundary of critical slipping block and the joint plane that passes the slope toe is the effective grouting area (EGA). After excavation, large deformation occurs along the joint plane. After grouting, the displacements of rock particles become uniform and continuous, and large deformations along the joint plane are controlled; the dynamic displacement can re- flect the deformation response of slope during excavation in the state before and after grouting, as well as the shear location of potential slip plane. After grouting, the dynamic displacement of each monitoring point reaches the peak value with very few time steps, which indicate that the parameters of the joint plane, such as strength and stiffness, are improved; the stress field becomes uniform. Tensile area reduces gradually; whole stability of the slope and its ability to resist tensile and shear stress are improved greatly.
文摘The paper is devoted to a new extension in Gegenbauer wavelet method (GWM) to investigate the transfer of heat and MHD boundary-layer flow of ferrofluids beside a flat plate with velocity slip. A homogenous model study is conducted in which we assumed the heat transfer and forced convective flow of ferrofluids along a flat plate with a uniform wall heat flux. In the direction of transverse to plate, a magnetic field is imposed. Three various magnetic nanoparticle types including Mn-ZnFe204, CoFe204, Fe3O4 are incorporated inside the base fluid. Two types of base fluids (water and kerosene) with bad thermal conductivity as compared to nanoparticles of solid magnetic have been assumed. The mathematical model is tackled via modified Gegenbauer wavelet method (MGWM). A simulation is accomplished for individual ferrofluid mixture by assuming the prevailing impacts of uniform and slip heat fluxes. The variation of heat transfers and skin friction were also observed at the surface of the plate and we analyzed the better heat transfer for every mixture. Kerosene-based magnetite (Fe304) delivers the better rate of heat transfer at wall due to its association with the kerosene-based Mn-Zn and cobalt ferrites. The slip velocity and magnetic field effects on the temperature, dimensionless velocity, rate of heat transfer and skin friction are examined for various magnetic nanoparticles inside the kerosene oil and water. We observed that the primary influence of magnetic field reduces the dimensionless surface temperature and accelerates the dimensionless velocity as compared to the hydrodynamic case, thus enhancing the rate of heat transfer and skin friction ferrofluids. Moreover, a detailed evaluation of outcomes obtained by MGWM, already published work and numerical RK-4 were found to be in excellent agreement. The error and convergence analysis are presented. Comparison of results,graphical plots, error and convergence analysis reveal the appropriateness of proposed method. The proposed algorithm can be extended for other nonlinear problems.