期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Kernel density estimation and marginalized-particle based probability hypothesis density filter for multi-target tracking 被引量:3
1
作者 张路平 王鲁平 +1 位作者 李飚 赵明 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第3期956-965,共10页
In order to improve the performance of the probability hypothesis density(PHD) algorithm based particle filter(PF) in terms of number estimation and states extraction of multiple targets, a new probability hypothesis ... In order to improve the performance of the probability hypothesis density(PHD) algorithm based particle filter(PF) in terms of number estimation and states extraction of multiple targets, a new probability hypothesis density filter algorithm based on marginalized particle and kernel density estimation is proposed, which utilizes the idea of marginalized particle filter to enhance the estimating performance of the PHD. The state variables are decomposed into linear and non-linear parts. The particle filter is adopted to predict and estimate the nonlinear states of multi-target after dimensionality reduction, while the Kalman filter is applied to estimate the linear parts under linear Gaussian condition. Embedding the information of the linear states into the estimated nonlinear states helps to reduce the estimating variance and improve the accuracy of target number estimation. The meanshift kernel density estimation, being of the inherent nature of searching peak value via an adaptive gradient ascent iteration, is introduced to cluster particles and extract target states, which is independent of the target number and can converge to the local peak position of the PHD distribution while avoiding the errors due to the inaccuracy in modeling and parameters estimation. Experiments show that the proposed algorithm can obtain higher tracking accuracy when using fewer sampling particles and is of lower computational complexity compared with the PF-PHD. 展开更多
关键词 particle filter with probability hypothesis density marginalized particle filter meanshift kernel density estimation multi-target tracking
在线阅读 下载PDF
Free clustering optimal particle probability hypothesis density(PHD) filter
2
作者 李云湘 肖怀铁 +2 位作者 宋志勇 范红旗 付强 《Journal of Central South University》 SCIE EI CAS 2014年第7期2673-2683,共11页
As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algori... As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algorithm is used to extract target states,a free clustering optimal P-PHD(FCO-P-PHD) filter is proposed.This method can lead to obtainment of analytical form of optimal sampling density of P-PHD filter and realization of optimal P-PHD filter without use of clustering algorithms in extraction target states.Besides,as sate extraction method in FCO-P-PHD filter is coupled with the process of obtaining analytical form for optimal sampling density,through decoupling process,a new single-sensor free clustering state extraction method is proposed.By combining this method with standard P-PHD filter,FC-P-PHD filter can be obtained,which significantly improves the tracking performance of P-PHD filter.In the end,the effectiveness of proposed algorithms and their advantages over other algorithms are validated through several simulation experiments. 展开更多
关键词 multiple target tracking probability hypothesis density filter optimal sampling density particle filter random finite set clustering algorithm state extraction
在线阅读 下载PDF
我国消费需求增速动态过程的区制状态划分与转移分析 被引量:7
3
作者 金晓彤 闫超 《中国工业经济》 CSSCI 北大核心 2010年第7期36-44,共9页
本文利用马尔科夫区制转移模型,基于1979年1月至2009年8月期间我国社会消费品零售总额月度同比增长率数据来具体刻画和分析我国消费需求增速过程的时间路径变化特征,检验结果表明,我国消费需求增速动态过程可以划分为"低速消费区制... 本文利用马尔科夫区制转移模型,基于1979年1月至2009年8月期间我国社会消费品零售总额月度同比增长率数据来具体刻画和分析我国消费需求增速过程的时间路径变化特征,检验结果表明,我国消费需求增速动态过程可以划分为"低速消费区制"、"适速消费区制"和"高速消费区制",消费需求增速过程在不同时域区间内处于不同的区制状态,并在部分区间内体现出显著的持续性特征。我们发现,我国居民消费增速在1996年经济成功实现"软着陆"以后,呈现出较为稳定的态势,但是始终在"低速消费区制"与"适速消费区制"之间交替、徘徊。从2009年初至今,我国处于"适速消费区制",因此,我国经济政策操作重点仍应该集中于扩大消费需求以期拉动总体经济增长。 展开更多
关键词 消费需求增速 区制转移模型 平滑概率 滤子概率
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部