The wavemeter can measure a wavelength of a tuned laser and an unknown laser. Due to the Doppler shift, the wavemeter operates and establishes coherent interference fringes on the detectors according to the Michelson ...The wavemeter can measure a wavelength of a tuned laser and an unknown laser. Due to the Doppler shift, the wavemeter operates and establishes coherent interference fringes on the detectors according to the Michelson interference principle. The electronic signals of the reference laser and an unknown laser both are multiplied frequency by PLL(Phase-Locked Loop) unit so as to enhance the resolutions of the wavemeter. PLL unit consists of NE564 and 74LS193.The movable reflector of the wavemeter is driven by a voice-coin motor. The closed loop feedback design can ensure the movable reflector to move in constant speed all the time. Experiment results show that precision of this wavemeter is super to 1×10-6, approaching to 2×10-7.展开更多
We present an innovative and practical scheme of building a miniaturized wavemeter, with the advantages of low cost, high reliability and simple structure. Through a calibration test by a 780 nm external cavity diode ...We present an innovative and practical scheme of building a miniaturized wavemeter, with the advantages of low cost, high reliability and simple structure. Through a calibration test by a 780 nm external cavity diode laser(ECDL), the results show that our system gets a wavelength resolution of better than 1 pm, measurement accuracy of better than 2 pm(corresponding to a frequency of 1 GHz), and a measurement range of 8.5 nm. Finally, the multi-mode comparison test between our system and a commercial spectrum analyzer further indicates the high-precision, miniaturization and low cost of the proposed system, which shows that it is particularly suitable for ECDL and atom cooling and trapping experiments. The system design, experimental results and conclusions are of definite significance as a fine reference for other ranges of wavelength.展开更多
The prediction method of dynamic wavelength is proposed for temperature tuning process. The temperature of the thermistor integrated in laser diode(LD) module is recorded to predict the LD chip temperature. Then accor...The prediction method of dynamic wavelength is proposed for temperature tuning process. The temperature of the thermistor integrated in laser diode(LD) module is recorded to predict the LD chip temperature. Then according to the injection current and priori tuning characteristics of the LDs, the emission wavelength is estimated in real time. The method is validated by using a 1.58 μm distributed feedback(DFB) LD. The absorption spectra of mixture gas of CO_2 and CO are measured by means of the thermal tuning gas sensing system. The center wavelength of each absorption line is compared with the data in HITRAN2012 database. The results show that the deviations are less than 5 pm. This method fully meets the needs of spectroscopic measurement, and can be applied to spectroscopy, optical communications and other fields.展开更多
文摘The wavemeter can measure a wavelength of a tuned laser and an unknown laser. Due to the Doppler shift, the wavemeter operates and establishes coherent interference fringes on the detectors according to the Michelson interference principle. The electronic signals of the reference laser and an unknown laser both are multiplied frequency by PLL(Phase-Locked Loop) unit so as to enhance the resolutions of the wavemeter. PLL unit consists of NE564 and 74LS193.The movable reflector of the wavemeter is driven by a voice-coin motor. The closed loop feedback design can ensure the movable reflector to move in constant speed all the time. Experiment results show that precision of this wavemeter is super to 1×10-6, approaching to 2×10-7.
基金supported by the National Natural Science Foundation of China(No.51275523)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20134307110009)+1 种基金the Graduate Innovative Research Fund of Hunan Province(No.CX20158015)the Excellent Graduate Innovative Fund of NUDT(No.B150305)
文摘We present an innovative and practical scheme of building a miniaturized wavemeter, with the advantages of low cost, high reliability and simple structure. Through a calibration test by a 780 nm external cavity diode laser(ECDL), the results show that our system gets a wavelength resolution of better than 1 pm, measurement accuracy of better than 2 pm(corresponding to a frequency of 1 GHz), and a measurement range of 8.5 nm. Finally, the multi-mode comparison test between our system and a commercial spectrum analyzer further indicates the high-precision, miniaturization and low cost of the proposed system, which shows that it is particularly suitable for ECDL and atom cooling and trapping experiments. The system design, experimental results and conclusions are of definite significance as a fine reference for other ranges of wavelength.
基金supported by the National Natural Science Foundation of China(No.61505142)the Tianjin Natural Science Foundation(No.16JCQNJC02100)
文摘The prediction method of dynamic wavelength is proposed for temperature tuning process. The temperature of the thermistor integrated in laser diode(LD) module is recorded to predict the LD chip temperature. Then according to the injection current and priori tuning characteristics of the LDs, the emission wavelength is estimated in real time. The method is validated by using a 1.58 μm distributed feedback(DFB) LD. The absorption spectra of mixture gas of CO_2 and CO are measured by means of the thermal tuning gas sensing system. The center wavelength of each absorption line is compared with the data in HITRAN2012 database. The results show that the deviations are less than 5 pm. This method fully meets the needs of spectroscopic measurement, and can be applied to spectroscopy, optical communications and other fields.