Runge-Kutta method is widely applied to solve the initial value problem of ordinary differential equations. The implicitRunge-Kutta with better numerical stability for the numerical integration of stiff differential s...Runge-Kutta method is widely applied to solve the initial value problem of ordinary differential equations. The implicitRunge-Kutta with better numerical stability for the numerical integration of stiff differential systems,but the formulate has traditionally been on solving the nonlinear equations resulting from a modified Newton iteration in every time.Semi-implicit formulate have the major computationally advantage that it is necessary to solve only linear systems of algebraic equations to find the Ka.展开更多
文摘Runge-Kutta method is widely applied to solve the initial value problem of ordinary differential equations. The implicitRunge-Kutta with better numerical stability for the numerical integration of stiff differential systems,but the formulate has traditionally been on solving the nonlinear equations resulting from a modified Newton iteration in every time.Semi-implicit formulate have the major computationally advantage that it is necessary to solve only linear systems of algebraic equations to find the Ka.