期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
火灾环境下钢结构响应行为的FDS-ABAQUS热力耦合方法研究 被引量:14
1
作者 段进涛 史旦达 +2 位作者 汪金辉 焦宇 何佩珊 《工程力学》 EI CSCD 北大核心 2017年第2期197-206,共10页
火灾环境下钢结构热力耦合分析普遍采用ISO834标准升温曲线(或火灾升温经验公式)描述结构的升温过程,然而这种方法并不能准确描述真实火灾环境下结构的升温过程。为了分析钢结构在真实火灾温度场下的热响应行为,该文以整体结构作为研究... 火灾环境下钢结构热力耦合分析普遍采用ISO834标准升温曲线(或火灾升温经验公式)描述结构的升温过程,然而这种方法并不能准确描述真实火灾环境下结构的升温过程。为了分析钢结构在真实火灾温度场下的热响应行为,该文以整体结构作为研究对象,提出了基于FDS和ABAQUS的火-热-结构耦合分析方法。该方法通过创建FDS-ABAQUS耦合接口,将FDS模拟得到的火灾动态温度场数据传输到有限元软件ABAQUS中,使用ABAQUS对整体结构进行热力耦合计算,得到整体结构在特定火灾场景下的力学响应特性。案例分析表明,该文创建的耦合方法可将FDS模拟得到的温度场数据传输到ABAQUS模型,分析结果显示传输温度场数据最大误差为2.18%;模拟整体结构热响应行为时考虑不均匀热膨胀引起的内力,模拟结果更接近真实火灾场景下的力学响应。 展开更多
关键词 钢结构 火灾 结构热响应 热力耦合方法 FDS ABAQUS
原文传递
静压支承摩擦副变形流热力耦合求解与实验 被引量:7
2
作者 于晓东 刘超 +1 位作者 左旭 张艳芹 《工程力学》 EI CSCD 北大核心 2018年第5期231-238,共8页
摩擦副变形对静压支承摩擦学性能有显著影响,不均匀变形会引起润滑油膜破裂和干摩擦,严重时导致静压支承摩擦失效。针对环形缝隙节流静压支承,运用计算流体动力学、弹性理论和有限元法对静压支承摩擦副变形进行流热力耦合求解,得到了旋... 摩擦副变形对静压支承摩擦学性能有显著影响,不均匀变形会引起润滑油膜破裂和干摩擦,严重时导致静压支承摩擦失效。针对环形缝隙节流静压支承,运用计算流体动力学、弹性理论和有限元法对静压支承摩擦副变形进行流热力耦合求解,得到了旋转速度和工作台自重对支承摩擦副变形的影响规律和摩擦失效机理。并进行了实验验证,数值模拟结果和实验值吻合较好,验证了数值模拟方法的正确性。研究结果表明:随着旋转工作台转速增加,间隙油膜温度升高,热变形增大。工作台自重产生摩擦副的弹性变形对热变形有均匀化作用,但其挤压效应会加大热变形,造成工作台和底座的变形为内边靠近外部开口的喇叭状。工况继续恶劣,润滑油黏度急剧下降,局部油膜迅速变薄,出现干摩擦润滑,导致静压支承摩擦失效。 展开更多
关键词 静压推力轴承 摩擦副变形 高速重载特性 摩擦失效 热力耦合方法
在线阅读 下载PDF
偏心螺栓多工步冷锻过程中温度场仿真预测 被引量:1
3
作者 金城旭 任靖日 赵海龙 《机械科学与技术》 CSCD 北大核心 2014年第5期702-705,共4页
采用热力耦合有限元方法计算了AISI4140钢偏心螺栓在多工步冷锻造过程中的实际温度。根据实测数据确定了该仿真过程中机械能转化热能的系数,对偏心螺栓的整个冷锻过程中的温度场做了仿真预测,分析了冲头速度对实际温度、载荷的影响。分... 采用热力耦合有限元方法计算了AISI4140钢偏心螺栓在多工步冷锻造过程中的实际温度。根据实测数据确定了该仿真过程中机械能转化热能的系数,对偏心螺栓的整个冷锻过程中的温度场做了仿真预测,分析了冲头速度对实际温度、载荷的影响。分析得出在给定的冲头速度范围内锻件温度随冲头速度呈线性增加,载荷因温度的关系随冲头速度有所下降,但后来无明显变化。 展开更多
关键词 偏心螺栓 多工步冷锻 温度场 热力耦合有限元方法
在线阅读 下载PDF
压力容器综合应力的数值分析 被引量:1
4
作者 杨永宏 《科技资讯》 2011年第23期19-20,共2页
本文使用ABAQUS软件建立某压力容器的二维轴对称数值计算模型,采用热-结构序贯耦合分析方法对其内压和温差引起的应力进行计算,获得了容器综合应力的分布规律,为其安全设计提供依据。
关键词 压力容器 热力序贯耦合方法 综合应力
在线阅读 下载PDF
Fracture prediction in non-isothermal viscous pressure bulging of aluminum alloy sheet using ductile fracture criterion 被引量:1
5
作者 王忠金 刘建光 李毅 《Journal of Central South University》 SCIE EI CAS 2010年第3期449-453,共5页
The failure of AA3003 aluminum alloy sheet metal was predicted for non-isothermal viscous pressure bulging (VPB). Utilizing the coupled thermo-mechanical finite element method combined with ductile fracture criterion,... The failure of AA3003 aluminum alloy sheet metal was predicted for non-isothermal viscous pressure bulging (VPB). Utilizing the coupled thermo-mechanical finite element method combined with ductile fracture criterion, the calculations were carried out for non-isotherm VPB at various temperatures and the influences of the initial temperature of viscous medium on failure mode of bulge specimens were investigated. The results show that the failure modes are different for the non-isothermal VPB with different initial temperatures of viscous medium. For the non-isothermal VPB of AA3003 aluminum alloy sheet with initial temperature of 250 ℃, when the initial temperature of viscous medium ranges from 150 to 180 ℃, the formability of sheet metal can be improved to a full extent. The validity of the predictions is examined by comparing with experimental results. 展开更多
关键词 fracture prediction non-isothermal viscous pressure bulging aluminum alloy sheet finite element method
在线阅读 下载PDF
Development of an aero-thermal coupled through-flow method for cooled turbines 被引量:3
6
作者 GU ChunWei LI HaiBo SONG Yin 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2015年第12期2060-2071,共12页
The influence of complicated interaction between the flow field and heat transfer in cooled turbines becomes more and more significant with the increasing turbine inlet temperature. However, classical through-flow met... The influence of complicated interaction between the flow field and heat transfer in cooled turbines becomes more and more significant with the increasing turbine inlet temperature. However, classical through-flow methods did not take into account the influence of the interaction caused by air cooling. The aerodynamic design and cooling design of cooled turbines were carried out separately, and the iterations between the aerodynamic design and cooling design led to a long design period and raised the design cost. To shorten the design period and decrease the design cost, this paper proposes a concise aero-thermal coupled through-flow method for the design of cooled turbines, taking into account the influence of the complicated interaction between the flow field and heat transfer in cooled turbines. The governing equations, such as energy equation and continuity equation in classical through-flow method are re-derived theoretically by considering the historical influence of cooling with the same method that deals with viscous losses in this paper. A cooling model is developed in this method. The cooled blade is split into a number of heat transfer elements, and the heat transfer is studied element by element along both the span and the chord in detail. This paper applies the method in the design of a two-stage axial turbine, of which the first stator is cooled with convective cooling. With the prescribed blade temperature limitation and the knowledge of the flow variables of the mainstream at the turbine inlet, such as the total pressure, total temperature and mass flow rate, the convergence of the calculation is then obtained and the properties of the flow field, velocity triangles and coolant requirement are well predicted. The calculated results prove that the aero-thermal coupled through-flow method is a reliable tool for flow analysis and coolant requirement prediction in the design of cooled turbines. 展开更多
关键词 aero-thermal coupled through-flow method cooling model cooled turbines
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部