基于海洋石油平台系统特征,比较分析了火炬系统的两种热辐射模型,建立了适用于水幕系统的两通量隔热模型.通过实验数据对比,验证了模型的适用性.结果表明,Thornton辐射模型比API RP 521标准中的方法更为合理;雾场特性参数对水幕系统的...基于海洋石油平台系统特征,比较分析了火炬系统的两种热辐射模型,建立了适用于水幕系统的两通量隔热模型.通过实验数据对比,验证了模型的适用性.结果表明,Thornton辐射模型比API RP 521标准中的方法更为合理;雾场特性参数对水幕系统的隔热效果有着很大的影响,水幕透射率随着液滴出口压力的增大而逐渐减小,但影响幅度逐渐减少.基于该模型所得到的实际海洋石油平台的火炬辐射水幕隔热系统的设计证明了该模型具有较好的合理性及较强的工程适用性.展开更多
In order to solve for temperature fields in microwave heating for recycling asphalt mixtures, a two-dimensional heat transfer model for the asphalt mixtures within the heating range is built based on the theory of uns...In order to solve for temperature fields in microwave heating for recycling asphalt mixtures, a two-dimensional heat transfer model for the asphalt mixtures within the heating range is built based on the theory of unsteady heat conduction. Four onedimensional heat transfer models are established for the asphalt mixtures outside the heating range, which are simplified into four half-infinite solids. The intensity of the radiation electric field is calculated through experiment by using heating water loads. It is suggested that the mathematical model of boundary conditions can be established in two ways, which are theoretical deduction and experimental reverse. The actual temperature field is achieved by fitting temperatures of different positions collected in the heating experiment. The simulant temperature field, which is solved with the Matlab PDE toolbox, is in good agreement with the actual temperature field. The results indicate that the proposed models have high precision and can be directly used to calculate the temperature distribution of asphalt pavements.展开更多
Soot,a product of insufficient combustion,is usually in the form of aggregate. The multi-scattering of soot fractal aggregates has been proved to play an important role in studying the soot radiative properties,which ...Soot,a product of insufficient combustion,is usually in the form of aggregate. The multi-scattering of soot fractal aggregates has been proved to play an important role in studying the soot radiative properties,which is rarely considered in predicting the radiative heat transfer in combustion flame. In the present study,based on the weighted sum of gray soot fractal aggregate(WSGSA) model,which is used to predict the temperature field and soot aggregates in turbulent diffusion flame,the flame temperature distribution and soot volume fraction distribution under the conditions of the model without considering radiation,the default radiation model in Fluent software and the WSGSA model are calculated respectively. The results show that the flame temperature will be seriously overestimated without considering radiation and the maximum relative discrepancy of flame centerline temperature is about 64.5%. The accuracy will be improved by the default radiation model in the Fluent software,but the flame temperature is still overestimated and the maximum relative discrepancy of flame centerline temperature is about 42.1%. However,more satisfactory results can be obtained by the WSGSA model,and the maximum relative discrepancy of flame centerline temperature is no more than 15.3%. Similar conclusions can also be obtained in studying the temperature distribution along different flame heights. Moreover,the soot volume fraction can be predicted more accurately with the application of the WSGSA model. Both without considering radiation and using the default radiation model in the Fluent software will result in the underestimating of soot volume fraction. All the results reveal that the WSGSA model can be used to predict the temperature and soot aggregates in the CH/air turbulent diffusion flame.展开更多
A combined conduction and radiation heat transfer model was used to simulate the heat transfer within wafer and investigate the effect of thermal transport properties on temperature non-uniformity within wafer surface...A combined conduction and radiation heat transfer model was used to simulate the heat transfer within wafer and investigate the effect of thermal transport properties on temperature non-uniformity within wafer surface. It is found that the increased conductivities in both doped and undoped regions help reduce the temperature difference across the wafer surface. However, the doped layer conductivity has little effect on the overall temperature distribution and difference. The temperature level and difference on the top surface drop suddenly when absorption coefficient changes from 104 to 103 m-1. When the absorption coefficient is less or equal to 103 m-1, the temperature level and difference do not change much. The emissivity has the dominant effect on the top surface temperature level and difference. Higher surface emissivity can easily increase the temperature level of the wafer surface. After using the improved property data, the overall temperature level reduces by about 200 K from the basis case. The results will help improve the current understanding of the energy transport in the rapid thermal processing and the wafer temperature monitor and control level.展开更多
文摘基于海洋石油平台系统特征,比较分析了火炬系统的两种热辐射模型,建立了适用于水幕系统的两通量隔热模型.通过实验数据对比,验证了模型的适用性.结果表明,Thornton辐射模型比API RP 521标准中的方法更为合理;雾场特性参数对水幕系统的隔热效果有着很大的影响,水幕透射率随着液滴出口压力的增大而逐渐减小,但影响幅度逐渐减少.基于该模型所得到的实际海洋石油平台的火炬辐射水幕隔热系统的设计证明了该模型具有较好的合理性及较强的工程适用性.
基金The Key Project of Science and Technology of Ministryof Education (No.105085)the Specialized Research Fund of Science andTechnology Production Translation of Jiangsu Province (No.BA2006068).
文摘In order to solve for temperature fields in microwave heating for recycling asphalt mixtures, a two-dimensional heat transfer model for the asphalt mixtures within the heating range is built based on the theory of unsteady heat conduction. Four onedimensional heat transfer models are established for the asphalt mixtures outside the heating range, which are simplified into four half-infinite solids. The intensity of the radiation electric field is calculated through experiment by using heating water loads. It is suggested that the mathematical model of boundary conditions can be established in two ways, which are theoretical deduction and experimental reverse. The actual temperature field is achieved by fitting temperatures of different positions collected in the heating experiment. The simulant temperature field, which is solved with the Matlab PDE toolbox, is in good agreement with the actual temperature field. The results indicate that the proposed models have high precision and can be directly used to calculate the temperature distribution of asphalt pavements.
基金supported by the National Natural Science Foundation of China (No. 51806103)the Aeronautical Science Foundation of China (No.201928052002)the Fundamental Research Funds for the Central Universities(No.NT2021007)。
文摘Soot,a product of insufficient combustion,is usually in the form of aggregate. The multi-scattering of soot fractal aggregates has been proved to play an important role in studying the soot radiative properties,which is rarely considered in predicting the radiative heat transfer in combustion flame. In the present study,based on the weighted sum of gray soot fractal aggregate(WSGSA) model,which is used to predict the temperature field and soot aggregates in turbulent diffusion flame,the flame temperature distribution and soot volume fraction distribution under the conditions of the model without considering radiation,the default radiation model in Fluent software and the WSGSA model are calculated respectively. The results show that the flame temperature will be seriously overestimated without considering radiation and the maximum relative discrepancy of flame centerline temperature is about 64.5%. The accuracy will be improved by the default radiation model in the Fluent software,but the flame temperature is still overestimated and the maximum relative discrepancy of flame centerline temperature is about 42.1%. However,more satisfactory results can be obtained by the WSGSA model,and the maximum relative discrepancy of flame centerline temperature is no more than 15.3%. Similar conclusions can also be obtained in studying the temperature distribution along different flame heights. Moreover,the soot volume fraction can be predicted more accurately with the application of the WSGSA model. Both without considering radiation and using the default radiation model in the Fluent software will result in the underestimating of soot volume fraction. All the results reveal that the WSGSA model can be used to predict the temperature and soot aggregates in the CH/air turbulent diffusion flame.
基金Project(N110204015)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(2012M510075)supported by the China Postdoctoral Science Foundation
文摘A combined conduction and radiation heat transfer model was used to simulate the heat transfer within wafer and investigate the effect of thermal transport properties on temperature non-uniformity within wafer surface. It is found that the increased conductivities in both doped and undoped regions help reduce the temperature difference across the wafer surface. However, the doped layer conductivity has little effect on the overall temperature distribution and difference. The temperature level and difference on the top surface drop suddenly when absorption coefficient changes from 104 to 103 m-1. When the absorption coefficient is less or equal to 103 m-1, the temperature level and difference do not change much. The emissivity has the dominant effect on the top surface temperature level and difference. Higher surface emissivity can easily increase the temperature level of the wafer surface. After using the improved property data, the overall temperature level reduces by about 200 K from the basis case. The results will help improve the current understanding of the energy transport in the rapid thermal processing and the wafer temperature monitor and control level.