A new model for three-dimensional processes based on the trinion algebra is introduced for the first time.Compared to the pure quaternion model, the trinion model is more compact and computationally more efficient,whi...A new model for three-dimensional processes based on the trinion algebra is introduced for the first time.Compared to the pure quaternion model, the trinion model is more compact and computationally more efficient,while having similar or comparable performance in terms of adaptive linear filtering. Moreover, the trinion model can effectively represent the general relationship of state evolution in Kalman filtering, where the pure quaternion model fails. Simulations on real-world wind recordings and synthetic data sets are provided to demonstrate the potential of this new modeling method.展开更多
In this paper,we study two different nonlinear interpolating paths in adiabatic evolution algorithms for solving a particular class of quantum search problems where both the initial and final Hamiltonian are one-dimen...In this paper,we study two different nonlinear interpolating paths in adiabatic evolution algorithms for solving a particular class of quantum search problems where both the initial and final Hamiltonian are one-dimensional projector Hamiltonians on the corresponding ground state.If the overlap between the initial state and final state of the quantum system is not equal to zero,both of these models can provide a constant time speedup over the usual adiabatic algorithms by increasing some another corresponding "complexity".But when the initial state has a zero overlap with the solution state in the problem,the second model leads to an infinite time complexity of the algorithm for whatever interpolating functions being applied while the first one can still provide a constant running time.However,inspired by a related reference,a variant of the first model can be constructed which also fails for the problem when the overlap is exactly equal to zero if we want to make up the "intrinsic" fault of the second model - an increase in energy.Two concrete theorems are given to serve as explanations why neither of these two models can improve the usual adiabatic evolution algorithms for the phenomenon above.These just tell us what should be noted when using certain nonlinear evolution paths in adiabatic quantum algorithms for some special kind of problems.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.61331019 and 61490691) the China Scholarship Council Postgraduate Scholarship Program(2014) the National Grid(UK)
文摘A new model for three-dimensional processes based on the trinion algebra is introduced for the first time.Compared to the pure quaternion model, the trinion model is more compact and computationally more efficient,while having similar or comparable performance in terms of adaptive linear filtering. Moreover, the trinion model can effectively represent the general relationship of state evolution in Kalman filtering, where the pure quaternion model fails. Simulations on real-world wind recordings and synthetic data sets are provided to demonstrate the potential of this new modeling method.
基金Supported by the National Natural Science Foundation of China under Grant No. 61173050
文摘In this paper,we study two different nonlinear interpolating paths in adiabatic evolution algorithms for solving a particular class of quantum search problems where both the initial and final Hamiltonian are one-dimensional projector Hamiltonians on the corresponding ground state.If the overlap between the initial state and final state of the quantum system is not equal to zero,both of these models can provide a constant time speedup over the usual adiabatic algorithms by increasing some another corresponding "complexity".But when the initial state has a zero overlap with the solution state in the problem,the second model leads to an infinite time complexity of the algorithm for whatever interpolating functions being applied while the first one can still provide a constant running time.However,inspired by a related reference,a variant of the first model can be constructed which also fails for the problem when the overlap is exactly equal to zero if we want to make up the "intrinsic" fault of the second model - an increase in energy.Two concrete theorems are given to serve as explanations why neither of these two models can improve the usual adiabatic evolution algorithms for the phenomenon above.These just tell us what should be noted when using certain nonlinear evolution paths in adiabatic quantum algorithms for some special kind of problems.