现有基于神经网络的电池荷电状态(state of charge,SOC)预测研究大多把重点放在模型结构和相关参数的优化上,却忽略了训练数据的重要作用.针对该问题,文中提出了一种基于特征选择和数据增强的电池SOC预测方法.首先,方法根据原始电池充...现有基于神经网络的电池荷电状态(state of charge,SOC)预测研究大多把重点放在模型结构和相关参数的优化上,却忽略了训练数据的重要作用.针对该问题,文中提出了一种基于特征选择和数据增强的电池SOC预测方法.首先,方法根据原始电池充放电数据进行特征工程,并使用排列重要性(permutation importance,PI)方法选出对模型预测最有帮助的7个特征;其次,通过加入高斯噪声来扩大训练数据样本总量,达到数据增强的目的.实验使用双向长短时记忆网络(bidirectional long short-term memory,Bi-LSTM)作为预测模型,使用Panasonic 18650PF数据集作为训练数据.使用标准Bi-LSTM进行预测时,平均绝对误差(mean absolute error,MAE)和最大误差(max error,MaxE)分别为0.65%和3.92%,而在进行特征选择和数据增强后,模型预测的MAE和MaxE分别为0.47%和2.62%,表明PI特征工程与高斯数据增强方法可以进一步提升电池荷电状态预测模型的精度.展开更多
为了提高铅酸电池荷电状态(State of Charge,SOC)的预测准确率,本文提出一种基于K均值聚类的高斯过程回归集成算法(K-means Cluster with Ensemble Gaussian Process Regression,KC-EGPR)。首先利用K均值聚类算法对原始训练集进行聚类,...为了提高铅酸电池荷电状态(State of Charge,SOC)的预测准确率,本文提出一种基于K均值聚类的高斯过程回归集成算法(K-means Cluster with Ensemble Gaussian Process Regression,KC-EGPR)。首先利用K均值聚类算法对原始训练集进行聚类,生成若干个包含原始训练集的某种局部信息的子训练集;然后在每个子集上训练高斯过程回归模型(GPR);最后利用集成学习理论中的自适应提升算法(Ada Boost)对训练的多个GPR进行集成,得到最终的预测模型。在三组铅酸电池数据集上的实验结果表明,所提出的KC-EGPR算法预测铅酸电池SOC的性能优于对比模型,具有广阔的应用前景。展开更多
文摘为了提高铅酸电池荷电状态(State of Charge,SOC)的预测准确率,本文提出一种基于K均值聚类的高斯过程回归集成算法(K-means Cluster with Ensemble Gaussian Process Regression,KC-EGPR)。首先利用K均值聚类算法对原始训练集进行聚类,生成若干个包含原始训练集的某种局部信息的子训练集;然后在每个子集上训练高斯过程回归模型(GPR);最后利用集成学习理论中的自适应提升算法(Ada Boost)对训练的多个GPR进行集成,得到最终的预测模型。在三组铅酸电池数据集上的实验结果表明,所提出的KC-EGPR算法预测铅酸电池SOC的性能优于对比模型,具有广阔的应用前景。