面向电动汽车一类宽温度,大幅值、宽频率随机电流应用场景,提出一种基于全新电热耦合模型的锂电池多状态在线联合估计方法。该模型由自回归等效电路模型与单态集总热模型耦合而成,以提高模型电气动态跟随性能。电热耦合模型参数采取“...面向电动汽车一类宽温度,大幅值、宽频率随机电流应用场景,提出一种基于全新电热耦合模型的锂电池多状态在线联合估计方法。该模型由自回归等效电路模型与单态集总热模型耦合而成,以提高模型电气动态跟随性能。电热耦合模型参数采取“先验信息初始化-在线修正”的方式确定,以避免电池一致性问题带来的误差,从而实现电热耦合关系在宽温度内的连续准确表达。基于所提出的ARST(autoregression-single state thermal model)耦合模型,该文采用双滤波算法实现锂电池多状态的在线联合估计,弥补目前电池3种及以上状态联合估计的稀缺问题。最后,在[0,50]℃,基于两个动态工况,将所提出的算法与两类基于模型的多状态联合估计算法进行比较。结果表明:ARST模型具有更好的电气跟随性能;所提出的模型参数在线辨识算法能够有效提高模型精度,从而提高多状态联合估计精度;在宽温度应用中,相较仅基于电模型的多状态联合估计算法,兼顾热状态估计的多状态联合估计算法能够有效提高电池状态的估计精度。展开更多
锂离子动力电池的峰值功率(State of power,SOP)直接影响电动汽车的加速爬坡性能以及回馈制动的能量回收能力,然而其不能直接测量,且准确估计十分困难。这源自于电池内部复杂的电化学特性,尤其是电池运行是一个电热特性相互耦合的过程,...锂离子动力电池的峰值功率(State of power,SOP)直接影响电动汽车的加速爬坡性能以及回馈制动的能量回收能力,然而其不能直接测量,且准确估计十分困难。这源自于电池内部复杂的电化学特性,尤其是电池运行是一个电热特性相互耦合的过程,过高的充放电功率可能引起电池过热,进而导致电池寿命加速衰减甚至引发安全事故,因此,引入电池温度作为峰值功率的重要约束条件之一,综合电池温度、电压、荷电状态(State of charge,SOC)等多参数约束实现峰值功率预测。首先建立电池电热耦合模型,准确描述电池电、热动态特性;进而在多参数约束条件下预测电池峰值功率;最后,改进了电池热模型的参数辨识方法,并在不同温度环境和动态工况下试验验证电池建模和峰值功率预测方法的有效性,试验结果表明该方法可有效预测电池充放电功率,提高电池使用的安全性。展开更多
文摘面向电动汽车一类宽温度,大幅值、宽频率随机电流应用场景,提出一种基于全新电热耦合模型的锂电池多状态在线联合估计方法。该模型由自回归等效电路模型与单态集总热模型耦合而成,以提高模型电气动态跟随性能。电热耦合模型参数采取“先验信息初始化-在线修正”的方式确定,以避免电池一致性问题带来的误差,从而实现电热耦合关系在宽温度内的连续准确表达。基于所提出的ARST(autoregression-single state thermal model)耦合模型,该文采用双滤波算法实现锂电池多状态的在线联合估计,弥补目前电池3种及以上状态联合估计的稀缺问题。最后,在[0,50]℃,基于两个动态工况,将所提出的算法与两类基于模型的多状态联合估计算法进行比较。结果表明:ARST模型具有更好的电气跟随性能;所提出的模型参数在线辨识算法能够有效提高模型精度,从而提高多状态联合估计精度;在宽温度应用中,相较仅基于电模型的多状态联合估计算法,兼顾热状态估计的多状态联合估计算法能够有效提高电池状态的估计精度。
文摘锂离子动力电池的峰值功率(State of power,SOP)直接影响电动汽车的加速爬坡性能以及回馈制动的能量回收能力,然而其不能直接测量,且准确估计十分困难。这源自于电池内部复杂的电化学特性,尤其是电池运行是一个电热特性相互耦合的过程,过高的充放电功率可能引起电池过热,进而导致电池寿命加速衰减甚至引发安全事故,因此,引入电池温度作为峰值功率的重要约束条件之一,综合电池温度、电压、荷电状态(State of charge,SOC)等多参数约束实现峰值功率预测。首先建立电池电热耦合模型,准确描述电池电、热动态特性;进而在多参数约束条件下预测电池峰值功率;最后,改进了电池热模型的参数辨识方法,并在不同温度环境和动态工况下试验验证电池建模和峰值功率预测方法的有效性,试验结果表明该方法可有效预测电池充放电功率,提高电池使用的安全性。