The DC microgrid has the advantages of high energy conversion efficiency,high energy transmission density,no reactive power flow,and grid-connected synchronization.It is an essential component of the future intelligen...The DC microgrid has the advantages of high energy conversion efficiency,high energy transmission density,no reactive power flow,and grid-connected synchronization.It is an essential component of the future intelligent power distribution system.Constant power load(CPL)will degrade the stability of the DC microgrid and cause system voltage oscillation due to its negative resistance characteristics.As a result,the stability of DC microgrids with CPL has become a problem.At present,the research on the stability of DC microgrid is mainly focused on unipolar DC microgrid,while the research on bipolar DC microgrid lacks systematic discussion.The stability of DC microgrid using CPL was studied first,and then the current stability criteria of DC microgrid were summarized,and its research trend was analyzed.On this basis,aiming at the stability problem caused by CPL,the existing control methods were summarized from the perspective of source converter output impedance and load converter input impedance,and the current control methods were outlined as active and passive control methods.Lastly,the research path of bipolar DC microgrid stability with CPL was prospected.展开更多
A comparison of the effectiveness of installing reactive power compensators,such as shunt capacitors,static var compensators(SVCs),and static synchronous compensators(STATCOMs),was presented in large-scale power netwo...A comparison of the effectiveness of installing reactive power compensators,such as shunt capacitors,static var compensators(SVCs),and static synchronous compensators(STATCOMs),was presented in large-scale power networks.A suitable bus was first identified using modal analysis method.The single shunt capacitor,single SVC,and single STATCOM were installed separately on the most critical bus.The effects of the installation of different devices on power loss reduction,voltage profile improvement,and voltage stability margin enhancement were examined and compared for 57-and 118-bus transmission systems.The comparative study results show that SVC,and STATCOM are expensive compared to shunt capacitor,yet the effect of installing STATCOM is better than SVC and the effect of installing SVC is better than that of shunt capacitor in achieving power loss reduction,voltage profile improvement and voltage stability margin enhancement.展开更多
With the increasing development of wind power,the scale of wind farms and unit capacity of wind turbines are getting larger and larger,and the impact of wind integration on power systems cannot be ignored.However,in m...With the increasing development of wind power,the scale of wind farms and unit capacity of wind turbines are getting larger and larger,and the impact of wind integration on power systems cannot be ignored.However,in most cases,the areas with a plenty of wind resources do not have strong grid structures.Furthermore,the characteristics of wind power dictate that wind turbines need to absorb reactive power during operation.Because of the strong correlation between voltage stability and systems' reactive power,the impacts of wind integration on voltage stability has become an important issue.Based on the power system simulation software DIgSILENT and combined analysis of actual practice,this paper investigates the impacts of two types of wind farms on voltage stability:namely a type of wind farms which are constituted by constant speed wind turbines based on common induction generators(IG) and another type of wind farms which are constituted by VSCF wind turbines based on doubly-fed induction generators(DFIG).Through investigation the critical fault clearing time is presented for different outputs of wind farms.Moreover,the impacts of static var compensator(SVC) and static synchronous compensator(STATCOM) on transient voltage stability in IG-based wind farms are studied to improve the security and stability of the Jiangsu power grid after the integration of large scale wind power.展开更多
基金supported by National Natural Science Foundation of China(No.51767015)Key Project of Natural Science Foundation of Gansu Province(No.22JR5RA317)Tianyou Innovation Team Support Program of Lanzhou Jiaotong University(No.TY202009)。
文摘The DC microgrid has the advantages of high energy conversion efficiency,high energy transmission density,no reactive power flow,and grid-connected synchronization.It is an essential component of the future intelligent power distribution system.Constant power load(CPL)will degrade the stability of the DC microgrid and cause system voltage oscillation due to its negative resistance characteristics.As a result,the stability of DC microgrids with CPL has become a problem.At present,the research on the stability of DC microgrid is mainly focused on unipolar DC microgrid,while the research on bipolar DC microgrid lacks systematic discussion.The stability of DC microgrid using CPL was studied first,and then the current stability criteria of DC microgrid were summarized,and its research trend was analyzed.On this basis,aiming at the stability problem caused by CPL,the existing control methods were summarized from the perspective of source converter output impedance and load converter input impedance,and the current control methods were outlined as active and passive control methods.Lastly,the research path of bipolar DC microgrid stability with CPL was prospected.
文摘A comparison of the effectiveness of installing reactive power compensators,such as shunt capacitors,static var compensators(SVCs),and static synchronous compensators(STATCOMs),was presented in large-scale power networks.A suitable bus was first identified using modal analysis method.The single shunt capacitor,single SVC,and single STATCOM were installed separately on the most critical bus.The effects of the installation of different devices on power loss reduction,voltage profile improvement,and voltage stability margin enhancement were examined and compared for 57-and 118-bus transmission systems.The comparative study results show that SVC,and STATCOM are expensive compared to shunt capacitor,yet the effect of installing STATCOM is better than SVC and the effect of installing SVC is better than that of shunt capacitor in achieving power loss reduction,voltage profile improvement and voltage stability margin enhancement.
文摘With the increasing development of wind power,the scale of wind farms and unit capacity of wind turbines are getting larger and larger,and the impact of wind integration on power systems cannot be ignored.However,in most cases,the areas with a plenty of wind resources do not have strong grid structures.Furthermore,the characteristics of wind power dictate that wind turbines need to absorb reactive power during operation.Because of the strong correlation between voltage stability and systems' reactive power,the impacts of wind integration on voltage stability has become an important issue.Based on the power system simulation software DIgSILENT and combined analysis of actual practice,this paper investigates the impacts of two types of wind farms on voltage stability:namely a type of wind farms which are constituted by constant speed wind turbines based on common induction generators(IG) and another type of wind farms which are constituted by VSCF wind turbines based on doubly-fed induction generators(DFIG).Through investigation the critical fault clearing time is presented for different outputs of wind farms.Moreover,the impacts of static var compensator(SVC) and static synchronous compensator(STATCOM) on transient voltage stability in IG-based wind farms are studied to improve the security and stability of the Jiangsu power grid after the integration of large scale wind power.