期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
零记忆增量学习的复合有源干扰识别
1
作者 吴振华 崔金鑫 +3 位作者 曹宜策 张强 张磊 杨利霞 《电子与信息学报》 北大核心 2025年第1期188-200,共13页
非完备、高动态有源干扰对抗作战环境下,现阶段针对库内多类型单一有源干扰样本所优化训练的静态模型,在面对库外类型多样、参数多变、组合方式多元的复合干扰时,模型无法快速更新且难以应对测试样本数非均衡问题。针对此问题,该文提出... 非完备、高动态有源干扰对抗作战环境下,现阶段针对库内多类型单一有源干扰样本所优化训练的静态模型,在面对库外类型多样、参数多变、组合方式多元的复合干扰时,模型无法快速更新且难以应对测试样本数非均衡问题。针对此问题,该文提出一种基于零记忆增量学习的雷达复合有源干扰识别方法。首先,利用元学习训练模式对库内单一干扰进行原型学习,训练出高效的特征提取器,使其具备对库外复合干扰特征有效提取能力。进而,基于超维空间和余弦相似度计算,构建零记忆增量学习网络(ZMILN),将复合干扰原型向量映射到超维空间并存储,从而实现识别模型动态更新。此外,为解决样本数非均衡下复合干扰识别问题,设计直推式信息最大化(TIM)测试模块,通过在互信息损失函数中加入散度约束,对识别模型进一步强化训练以应对非均衡测试样本。实验结果表明,该文所提方法在非均衡测试条件下对4种单一干扰和7种复合干扰进行增量学习后,平均识别准确率达到了93.62%。该方法通过对库内多类型单一干扰知识充分提取,实现对多种组合条件下库外复合干扰的快速动态识别。 展开更多
关键词 雷达有源干扰 零记忆增量学习 非均衡 直推式信息最大化 复合干扰识别
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部