期刊文献+
共找到4,367篇文章
< 1 2 219 >
每页显示 20 50 100
基于主成分分析算法和K均值聚类算法的药品库存分类管理
1
作者 唐蕾 邱磊 +1 位作者 俞佳慧 冀召帅 《医药导报》 北大核心 2025年第4期682-686,共5页
目的针对目前药品分类主观性较强、分类标准模糊、影响因素繁杂的问题,探讨一种科学的药品分类方法,以降低库存成本,提高库存的有效性。方法在北京某三级医院2021—2022年历史数据中随机抽取700种药品为研究对象,通过主成分分析(PCA)算... 目的针对目前药品分类主观性较强、分类标准模糊、影响因素繁杂的问题,探讨一种科学的药品分类方法,以降低库存成本,提高库存的有效性。方法在北京某三级医院2021—2022年历史数据中随机抽取700种药品为研究对象,通过主成分分析(PCA)算法和K均值聚类(K-means)算法对研究对象进行分类。结果确定轮廓系数为0.3470的分类数4为最佳分类数,将700种药品分为4类,其中有363种归为第一类,186种归为第二类,94种归为第三类,57种归为第四类。将该文研究的药品分类方法模拟运用到某三级医院2023年第二季度的药品库存管理中,模拟结果表明该分类方法能够降低库存成本,提高库存有效性。结论基于PCA算法和K-means聚类算法的药品分类方法能够为药品库存分类管理提供可靠依据。 展开更多
关键词 药品分 主成分分析算法 K均值算法 药品库存管理
在线阅读 下载PDF
采用混合策略联合优化的模糊C-均值聚类信息熵点云简化算法 被引量:1
2
作者 黄鹤 黄佳慧 +2 位作者 刘国权 王会峰 高涛 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第7期214-226,共13页
针对传统聚类算法处理点云简化问题时精度低、耗时长且易丢失特征信息等问题,提出了一种基于动态精英自适应混合策略的鹈鹕算法(DEAMPOA)与加权熵法联合优化的模糊C-均值聚类(FCM)信息熵点云简化算法。采用动态自适应种群混合策略,同时... 针对传统聚类算法处理点云简化问题时精度低、耗时长且易丢失特征信息等问题,提出了一种基于动态精英自适应混合策略的鹈鹕算法(DEAMPOA)与加权熵法联合优化的模糊C-均值聚类(FCM)信息熵点云简化算法。采用动态自适应种群混合策略,同时融合了精英反向化思路,显著提升了鹈鹕优化算法(POA)的收敛趋势和全局寻优能力,提高了寻找FCM最优聚类中心的成功率;利用DEAMPOA结合加权熵法对FCM进行优化,提高鲁棒性的同时增强了搜索精度,得到较好的聚类结果;在8种UCI标准数据集上与4种算法对比进行聚类性能评估实验,验证了所提方法综合性能优越;将所提方法与信息熵融合,并应用在三维点云KITTI数据集简化中。实验结果表明:与包围框简化法、随机采样简化法和特征选择简化法对比,所提方法全局误差简化前后点集之间平均欧式距离(MED)指标分别降低了2.25%、6.93%、5.74%,点云简化效果最优且运行速度满足要求。 展开更多
关键词 C-均值 鹈鹕优化算法 点云简化 信息熵
在线阅读 下载PDF
基于区块链与模糊聚类算法的区域大数据分析技术研究
3
作者 何颖 《现代电子技术》 北大核心 2025年第6期52-56,共5页
金融数据具备非线性、高维度的特点,同时对安全性有较高的要求。文中结合区块链技术和模糊聚类算法,提出一种面向区域互联网金融的异常数据分析模型,该模型由异常数据分析算法和隐私保护算法组成。异常数据分析算法针对模糊均值聚类算... 金融数据具备非线性、高维度的特点,同时对安全性有较高的要求。文中结合区块链技术和模糊聚类算法,提出一种面向区域互联网金融的异常数据分析模型,该模型由异常数据分析算法和隐私保护算法组成。异常数据分析算法针对模糊均值聚类算法处理高维非线性数据能力弱的缺点,使用深度信念网络进行改进,进而提升模型的数据处理能力。隐私保护使用差分隐私保护算法,在不利用背景知识的前提下完成数据的保护,同时保证了数据的可用性。在实验测试中,将所提模糊聚类算法与常用的主流K-Means算法、DPC算法进行了对比,结果表明:所提算法的性能在所有对比算法中最优;与此同时,加入隐私保护算法后对聚类结果的影响保持在0.021以内,充分证明了该算法性能的优越性。 展开更多
关键词 模糊算法 区块链技术 异常数据识别 深度信念网络 差分隐私保护算法 区域数据分析
在线阅读 下载PDF
构建基于模糊聚类算法的网络情绪动态分析系统
4
作者 薛淼 段立娟 《现代信息科技》 2025年第5期95-98,104,共5页
网络情绪动态分析研究可以通过分析网络文本中的情绪语义表达来实现。构建基于模糊聚类算法的网络情绪动态分析系统,需要以情绪语义模板为基础,利用爬虫软件获取个体或群体在社交网络上的文本数据。在对情绪状态进行数值化处理的基础上... 网络情绪动态分析研究可以通过分析网络文本中的情绪语义表达来实现。构建基于模糊聚类算法的网络情绪动态分析系统,需要以情绪语义模板为基础,利用爬虫软件获取个体或群体在社交网络上的文本数据。在对情绪状态进行数值化处理的基础上,利用模糊聚类(FCM)算法进行情绪状态的聚类分析,并根据聚类结果识别网民的情绪状态及其变化趋势。该系统由情绪语义模板生成模块、数据采集模块、数据预处理模块和模糊聚类分析模块组成,可为社会管理和危机干预提供决策支持。 展开更多
关键词 模糊算法 标准分 网络情绪 动态分析
在线阅读 下载PDF
基于均值漂移聚类算法的岩体结构面产状优势分组
5
作者 彭是焱 周鑫 +1 位作者 申壮 徐千博 《科学技术与工程》 北大核心 2025年第4期1392-1399,共8页
岩体结构面产状的优势分组对于揭示不同类型结构面的分布规律和特征具有重要意义。传统的结构面极点密度图分组方法通常较为依赖地质经验,缺乏一定客观性,为此,引入均值漂移聚类算法开展岩体结构面产状优势分组研究。首先,人工生成不同... 岩体结构面产状的优势分组对于揭示不同类型结构面的分布规律和特征具有重要意义。传统的结构面极点密度图分组方法通常较为依赖地质经验,缺乏一定客观性,为此,引入均值漂移聚类算法开展岩体结构面产状优势分组研究。首先,人工生成不同离散程度岩体结构面产状数据。随后,将生成的产状数据转换为三维空间中的坐标,并以单位法向量的夹角正弦值γ作为相似性度量标准。接下来采用均值漂移算法对度量的数据集进行聚类分析,通过与传统的极点密度图法和K均值聚类算法进行比较,有效性检验指标和聚类错误识别率与K均值聚类算法接近一致。最后以重庆三功矿岩质边坡为工程实例,通过野外采集到的结构面数据验证了新方法的合理性及有效性。结果表明:该方法聚类效果优于传统的极点图分组方法和K均值聚类算法,聚类结果客观合理,对近水平产状也有良好的聚类效果。 展开更多
关键词 岩体 结构面产状 优势分组 均值漂移算法
在线阅读 下载PDF
基于改进模糊C均值聚类与SMO算法的地铁轨道健康状态评价
6
作者 许以凯 杨艺 +2 位作者 张明凯 赵才友 万壮 《铁道标准设计》 北大核心 2024年第11期53-59,共7页
轨道健康状态评价技术对于保障列车的运行安全与乘客的舒适性有重要意义,为寻求一种新的轨道设备综合评价方法,实现对轨道健康状态的科学评价,提出一种基于改进模糊C均值聚类和序列最小优化算法(SMO)构建轨道健康状态评估分析模型。该... 轨道健康状态评价技术对于保障列车的运行安全与乘客的舒适性有重要意义,为寻求一种新的轨道设备综合评价方法,实现对轨道健康状态的科学评价,提出一种基于改进模糊C均值聚类和序列最小优化算法(SMO)构建轨道健康状态评估分析模型。该模型首先提出包含轨道几何状态和结构状态的综合评价指标体系;其次采用变异系数法计算评价指标的权重系数并代入模糊C均值聚类法,得到各轨道样本的分类结果;在此基础上,再利用序列最小优化算法通过划分数据对轨道健康状态进行评价;最后通过实例分析对该评价模型进行验证并开展研究。研究结果表明,经模型评价的855个轨道单元评价结果中优良比例为94%,预测效果良好,平均误差为5%,进而验证了该模型的指标体系和评价方法的科学性和合理性,并给出了进一步研究优化的方向。本文对各轨道指标统筹综合评价,为地铁轨道工务管理线路质量评价提供一种新思路,使轨道设备管理变得有序可控,减少人力、物力资源的浪费。 展开更多
关键词 地铁 轨道 健康状态评价 变异系数法 模糊C均值 SMO算法
在线阅读 下载PDF
基于核距离的直觉模糊c均值聚类算法 被引量:9
7
作者 余晓东 雷英杰 +2 位作者 宋亚飞 岳韶华 申晓勇 《电子学报》 EI CAS CSCD 北大核心 2016年第10期2530-2534,共5页
针对现有直觉模糊c均值聚类算法无法发现非凸聚类结构的缺陷,提出了一种基于核化距离的直觉模糊c均值聚类算法.算法在定义了基于核的直觉模糊欧式距离基础上,通过把聚类样本映射到高维特征空间,使原来没有显现的特征突现出来,从而能够... 针对现有直觉模糊c均值聚类算法无法发现非凸聚类结构的缺陷,提出了一种基于核化距离的直觉模糊c均值聚类算法.算法在定义了基于核的直觉模糊欧式距离基础上,通过把聚类样本映射到高维特征空间,使原来没有显现的特征突现出来,从而能够更好地聚类.实验选择一组人工数据集及一组UCI数据集测试了本文算法,并将其与五种经典的聚类算法进行了比较.实验结果充分表明了该算法的有效性及优越性. 展开更多
关键词 直觉模糊 直觉模糊 核方法 无监督学习
在线阅读 下载PDF
基于分布信息直觉模糊c均值聚类的红外图像分割算法 被引量:26
8
作者 王晓飞 胡凡奎 黄硕 《通信学报》 EI CSCD 北大核心 2020年第5期120-129,共10页
针对传统的直觉模糊c均值聚类算法进行图像分割时对聚类中心敏感导致最终聚类精度低、细节保留性差、时间复杂度较大等不足,提出了一种适用于电力设备红外图像分割的基于分布信息的直觉模糊c均值聚类算法。红外图像中高强度的非目标对... 针对传统的直觉模糊c均值聚类算法进行图像分割时对聚类中心敏感导致最终聚类精度低、细节保留性差、时间复杂度较大等不足,提出了一种适用于电力设备红外图像分割的基于分布信息的直觉模糊c均值聚类算法。红外图像中高强度的非目标对象与图像强度不均匀对图像分割有较强干扰,所提算法能有效抑制该干扰。首先,将高斯模型引入电力设备的全局空间分布信息中以改进IFCM算法;其次,利用局部空间信息的空间算子优化隶属函数来解决边缘模糊和图像强度不均匀问题。经过对Terravic动态红外数据库与包含300幅电力设备红外图像的数据集进行实验,相对区域错误率在10%左右,受模糊因子m变化影响较小,验证了所提算法在有效性与适用性上明显优于其他对比算法。 展开更多
关键词 直觉模糊c均值 红外图像 高斯模型 局部信息
在线阅读 下载PDF
基于空间信息的鲁棒模糊C均值聚类的苗族服饰图像分割算法 被引量:1
9
作者 覃小素 黄成泉 +3 位作者 彭家磊 陈阳 雷欢 周丽华 《毛纺科技》 CAS 北大核心 2024年第1期91-98,共8页
针对苗族服饰图像中破损污渍、折叠痕迹、色彩差异大和噪声破坏等现象所导致的传统模糊C均值聚类(Fuzzy C-means,FCM)算法分割质量不佳问题,提出了基于空间信息鲁棒FCM算法,用于苗族服饰图像分割。通过均值滤波和中值滤波处理空间邻域信... 针对苗族服饰图像中破损污渍、折叠痕迹、色彩差异大和噪声破坏等现象所导致的传统模糊C均值聚类(Fuzzy C-means,FCM)算法分割质量不佳问题,提出了基于空间信息鲁棒FCM算法,用于苗族服饰图像分割。通过均值滤波和中值滤波处理空间邻域信息,对应获得2种方法,并用一个加权参数调节模糊隶属度的稀疏性,旨在加强细节的提取和提高算法对噪声的鲁棒性。实验表明,对于被高斯噪声破坏的图像,基于均值滤波处理的改进算法,其划分系数提高约3.6%,划分熵降低约5.6%;对于被椒盐噪声破坏的图像,基于中值滤波处理的空间约束项的改进算法,划分系数提高约2.7%,划分熵降低约4.3%。该算法提高了对这类苗族服饰图像分割的质量,对于传统文化的传承具有非凡的意义。 展开更多
关键词 苗族服饰图像 模糊C均值 均值滤波 中值滤波 模糊隶属度的稀疏性
在线阅读 下载PDF
基于模糊逻辑COOT优化K调和均值的数据聚类算法
10
作者 戴峦岳 梁宵月 +1 位作者 王帅 王震坡 《广西科学》 北大核心 2024年第5期900-911,共12页
针对K调和均值(K-Harmonic Means, KHM)聚类算法易陷入局部最优的不足,本文结合KHM聚类算法的快速局部开发和白骨顶鸡优化算法(Coot optimization algorithm, COOT)的全局勘探能力,提出一种模糊逻辑COOT优化KHM的数据聚类算法(Fuzzy COO... 针对K调和均值(K-Harmonic Means, KHM)聚类算法易陷入局部最优的不足,本文结合KHM聚类算法的快速局部开发和白骨顶鸡优化算法(Coot optimization algorithm, COOT)的全局勘探能力,提出一种模糊逻辑COOT优化KHM的数据聚类算法(Fuzzy COOT K-Harmonic Means, FCOOTKHM)。将KHM聚类算法生成的初始聚类解输入白骨顶鸡初始种群结构再进行迭代寻优。同时,为了进一步提升COOT的搜索精度,设计模糊逻辑对COOT的收敛因子和领导者种群占比进行自适应调整,均衡算法的搜索与开发能力。使用聚类调和平均值评估种群个体的适应度,结合智能算法启发式搜索对聚类结果迭代寻优。利用加州大学欧文分校(University of California Irvine, UCI)数据库中的7个数据集对FCOOTKHM的聚类性能进行验证分析。结果表明,FCOOTKHM在准确率、精确度、召回率、F度量、Kappa系数和收敛效率等指标上均表现更好,该算法能够实现更精确的数据聚类。 展开更多
关键词 模糊逻辑 模糊系统 白骨顶鸡优化算法 K调和均值 收敛性
在线阅读 下载PDF
基于高斯核函数的差分隐私模糊C均值聚类算法的构建与应用 被引量:1
11
作者 曹自雄 陈宇鲜 蒋秀梅 《中国医学装备》 2024年第8期106-112,共7页
目的:提出一种基于高斯核函数的差分隐私模糊C均值聚类算法(DPFCM_GF),旨在优化大数据背景下医疗数据分析和挖掘带来的数据隐私安全问题,为数据隐私保护提供理论基础。方法:针对随机初始化模糊C-均值隶属度矩阵降低算法精度问题,采用最... 目的:提出一种基于高斯核函数的差分隐私模糊C均值聚类算法(DPFCM_GF),旨在优化大数据背景下医疗数据分析和挖掘带来的数据隐私安全问题,为数据隐私保护提供理论基础。方法:针对随机初始化模糊C-均值隶属度矩阵降低算法精度问题,采用最大距离法确定初始中心点,使用聚类中心点的高斯值计算隐私预算分配比率,并添加拉普拉斯噪声以完成差分隐私保护,构建DPFCM_GF。收集整理美国加州大学欧文分校机器学习存储库的心脏病、乳腺癌、甲状腺疾病及糖尿病公开数据集对DPFCM_GF有效性进行验证,收集2019年1月1日至2022年12月31日淮安市第二人民医院收治的756例胃癌和肺癌患者病例数据集,对DPFCM_GF的可用性进行验证,并将分析结果与模糊C均值聚类算法(FCM)以及差分隐私模糊C均值聚类算法(DPFCM)进行对比分析。结果:对于心脏病、乳腺癌、甲状腺疾病及糖尿病公开数据集,DPFCM_GF和DPFCM的最优聚类效果与FCM聚类效果相当;相较于DPFCM,DPFCM_GF迭代时间更快,聚集速度显著,差异有统计学意义(t=4.01、4.71、4.01、12.38,P<0.05)。对于肺癌和胃癌数据集,随着隐私预算ε的增大,DPFCM_GF正确识别率逐渐聚集于91.9%和93.9%,受试者工作特征(ROC)曲线下面积(AUC)值分别为0.79和0.81;当隐私函数ε为0.1、0.5、1和2(ε<3)时,DPFCM_GF聚类效果显著优于DPFCM,且聚类效果更佳,差异有统计学意义(χ^(2)=12.25、87.12、68.58、7.76,P<0.05;χ^(2)=4.74、43.51、42.47、4.89,P<0.05)。结论:DPFCM_GF是一种有效保护医疗数据隐私的方法,同时也可进行数据分析和挖掘任务,具有一定的研究意义和研究前景。 展开更多
关键词 数据隐私 差分隐私 模糊C均值算法 高斯核函数 数据挖掘 隐私预算
在线阅读 下载PDF
改进模糊聚类语义分割声环境功能区划图
12
作者 曾宇 姚琨 秦勤 《噪声与振动控制》 北大核心 2025年第2期210-215,共6页
声环境功能区划多采用地理信息系统进行研究,但公开发布的声环境功能区划方案中的文字和图片无法直接用于地理信息系统分析。首先提出改进模糊C均值聚类超像素方法,对声环境功能区划图进行语义分割以获取声功能区信息。接着采用简单线... 声环境功能区划多采用地理信息系统进行研究,但公开发布的声环境功能区划方案中的文字和图片无法直接用于地理信息系统分析。首先提出改进模糊C均值聚类超像素方法,对声环境功能区划图进行语义分割以获取声功能区信息。接着采用简单线性迭代聚类构建超像素,提取声环境功能区划图特征矩阵,基于K-means++改进模糊C均值聚类算法,语义分割超像素粒化的声环境功能区划图,并以声功能区面积占比计算结果偏差为评价指标,分析超像素尺度对分割结果的影响。然后基于不同图像特征矩阵构建方法和聚类中心初始化方法,使用模糊C均值聚类、高斯混合模型聚类、K-medoids聚类语义分割声环境功能区划图,最后比较不同组合方案的声功能区面积占比计算结果偏差,验证方法的有效性。 展开更多
关键词 声学 声环境功能区划图 彩色图像分割 模糊C均值 简单线性迭代 K-means++算法
在线阅读 下载PDF
模糊C-均值算法在直觉模糊数聚类中的应用 被引量:12
13
作者 吴成茂 《计算机工程与应用》 CSCD 北大核心 2009年第16期141-145,共5页
提出了直觉模糊数的非监督模糊C-均值聚类算法。该算法首先定义了直觉模糊数之间的距离,其次构造了直觉模糊数聚类问题的目标函数,最后得到了直觉模糊数聚类的模糊C-均值聚类算法,聚类中心初始化方法,以及相关的聚类有效性函数。实验结... 提出了直觉模糊数的非监督模糊C-均值聚类算法。该算法首先定义了直觉模糊数之间的距离,其次构造了直觉模糊数聚类问题的目标函数,最后得到了直觉模糊数聚类的模糊C-均值聚类算法,聚类中心初始化方法,以及相关的聚类有效性函数。实验结果表明,该算法是有效的。 展开更多
关键词 模糊 直觉模糊 模糊C-均值 有效性函数
在线阅读 下载PDF
改进的核空间直觉模糊C-均值聚类分割算法 被引量:1
14
作者 田小平 侯伟建 吴成茂 《西安邮电大学学报》 2015年第6期45-50,共6页
针对鲁棒模糊局部信息C-均值聚类分割算法易丢失图像细节的问题,提出一种改进的核空间直觉模糊C-均值聚类算法。将像素空间邻域信息和直觉指数引入到鲁棒模糊局部信息C-均值聚类目标函数,给出改进的像素空间邻域信息约束的聚类目标函数... 针对鲁棒模糊局部信息C-均值聚类分割算法易丢失图像细节的问题,提出一种改进的核空间直觉模糊C-均值聚类算法。将像素空间邻域信息和直觉指数引入到鲁棒模糊局部信息C-均值聚类目标函数,给出改进的像素空间邻域信息约束的聚类目标函数,对其聚类目标函数最优化推导并得到新的隶属度和聚类中心迭代表达式,并设计相应的图像分割算法,以便提高图像局部信息的有效分割能力。实验结果表明,改进的核空间直觉模糊聚类分割算法相比现有鲁棒模糊局部信息C-均值聚类分割算法能获得更好的分割效果。 展开更多
关键词 模糊C-均值 像素空间邻域信息 核空间 直觉模糊
在线阅读 下载PDF
基于自适应近邻信息的模糊C均值聚类算法
15
作者 高云龙 李建鹏 +3 位作者 郑兴莘 邵桂芳 祝青园 曹超 《光学精密工程》 EI CAS CSCD 北大核心 2024年第7期1045-1058,共14页
传统的模糊C均值算法直接基于原始数据进行聚类,数据的内在结构可能会被噪声、异常值或其他因素破坏,因此聚类性能会受到影响。为提升FCM算法的鲁棒性,提出了一种基于自适应近邻信息的模糊C均值聚类算法。近邻信息指的是一种基于数据点... 传统的模糊C均值算法直接基于原始数据进行聚类,数据的内在结构可能会被噪声、异常值或其他因素破坏,因此聚类性能会受到影响。为提升FCM算法的鲁棒性,提出了一种基于自适应近邻信息的模糊C均值聚类算法。近邻信息指的是一种基于数据点之间相似度的度量,每个数据点都可以看作其他数据点的近邻,但是不同数据点之间的相似度是不同的。将样本点的近邻信息GX和类中心点的近邻信息GV融入基础FCM模型中,为聚类过程提供更多的数据结构信息,用于指导聚类算法中的簇划分过程,以提升算法的稳定性,并提出了3个迭代算法求解本文提出的聚类模型。与其他先进聚类算法对比,在部分基准数据集上聚类性能有10%以上的提升,同时还从参数敏感性、收敛性、消融实验等方面对算法进行评价。实验结果可以充分显示本文提出的聚类算法的可行性与有效性。 展开更多
关键词 模糊C均值 自适应近邻 算法鲁棒性 迭代算法
在线阅读 下载PDF
基于快速鲁棒模糊C有序均值聚类的苗族服饰图像分割算法
16
作者 陈阳 黄成泉 +3 位作者 雷欢 彭家磊 覃小素 周丽华 《毛纺科技》 CAS 北大核心 2024年第8期81-89,共9页
苗族服饰图像具有绣线纹理复杂、色彩形状多样等特征,针对模糊C有序均值(Fuzzy C-Ordered-Means,FCOM)聚类算法在进行苗族服饰图像分割时,存在耗时长、分割效果不理想的问题,提出了一种快速鲁棒模糊C有序均值聚类算法。在FCOM算法基础... 苗族服饰图像具有绣线纹理复杂、色彩形状多样等特征,针对模糊C有序均值(Fuzzy C-Ordered-Means,FCOM)聚类算法在进行苗族服饰图像分割时,存在耗时长、分割效果不理想的问题,提出了一种快速鲁棒模糊C有序均值聚类算法。在FCOM算法基础上加入了竞争学习的思想,通过构造新的隶属度约束函数,对像素点进行更加强制清晰的划分,提高图像像素定位的准确性,从而加快算法的收敛速度。结果表明,本文算法在图像分割过程中能有效地降低异常值的影响,获得更加准确的分割结果。该算法在Jaccard相似系数、分割精度、Dice相似系数、模糊划分系数及模糊划分熵等性能方面均优于其他几种模糊C均值(Fuzzy C-Means,FCM)算法,且分割时间与迭代次数也优于FCOM算法。 展开更多
关键词 苗族图像分割 算法 模糊C有序均值 竞争学习 鲁棒性
在线阅读 下载PDF
引导模糊C均值聚类算法在联合反演综合解释中的应用
17
作者 陈易周 刘江 +2 位作者 涂齐催 李炳颖 娄敏 《石油地球物理勘探》 EI CSCD 北大核心 2024年第4期865-874,共10页
不同地球物理方法的反演结果常常存在差异,根据不同方法的联合反演结果得到最终合理解释是了解地下结构的关键。为此,提出了一种引导式模糊C均值(FCM)聚类算法,即在FCM聚类算法的基础上,结合现有地质认识,引入先验约束信息指导聚类中心... 不同地球物理方法的反演结果常常存在差异,根据不同方法的联合反演结果得到最终合理解释是了解地下结构的关键。为此,提出了一种引导式模糊C均值(FCM)聚类算法,即在FCM聚类算法的基础上,结合现有地质认识,引入先验约束信息指导聚类中心的确定,对地球物理联合反演结果进行综合定量解释,旨在降低传统人工解释的主观性和局限性。模型测试表明,与传统FCM聚类技术相比,引导FCM聚类技术效果更好,特别是处理复杂地质结构的反演数据时,能够有效地区分不同地质体。实际数据的应用结果证明了引导FCM聚类技术在多属性地球物理联合反演结果综合解释中的应用潜力较大。该技术不仅提升了地球物理数据解释的科学性,而且为地下资源勘探提供了一个更可靠和精确的工具。 展开更多
关键词 模糊C均值 联合反演 综合解释 先验约束信息 多属性
在线阅读 下载PDF
基于犹豫质心距离测度的直觉模糊聚类算法
18
作者 王明新 孙刚 王贵君 《模糊系统与数学》 北大核心 2024年第3期143-152,共10页
通过对直觉模糊数的犹豫度进行分析提出犹豫信息量和犹豫质心距离测度概念,并在此基础上给出新的直觉模糊聚类算法。首先,根据直觉模糊数犹豫区域质心与最小直觉模糊数的距离给出犹豫信息量的定义,借助几何意义引入犹豫质心距离测度的概... 通过对直觉模糊数的犹豫度进行分析提出犹豫信息量和犹豫质心距离测度概念,并在此基础上给出新的直觉模糊聚类算法。首先,根据直觉模糊数犹豫区域质心与最小直觉模糊数的距离给出犹豫信息量的定义,借助几何意义引入犹豫质心距离测度的概念,并证明该距离测度满足距离公理;其次,依据犹豫质心距离测度建立直觉模糊相似矩阵,进而在直觉模糊数空间上设计一种聚类算法;最后,通过算例对所提算法的有效性进行了分析与验证。 展开更多
关键词 直觉模糊 犹豫度 犹豫信息量 犹豫质心距离测度
原文传递
基于模糊C-均值聚类算法的动态等值研究
19
作者 杨濛濛 《中国设备工程》 2024年第1期97-98,共2页
近年来,随着特高压交直流输电线路的不断建立,需要准确地模拟交直流大电网故障期间的暂态特性已十分困难。电磁暂态仿真计算结果较为准确,但计算量太大,因此需要在计算前对被仿真网络进行动态等值。本文首先介绍了模糊C-均值聚类算法(F... 近年来,随着特高压交直流输电线路的不断建立,需要准确地模拟交直流大电网故障期间的暂态特性已十分困难。电磁暂态仿真计算结果较为准确,但计算量太大,因此需要在计算前对被仿真网络进行动态等值。本文首先介绍了模糊C-均值聚类算法(FCM)及基于物理等效的动态等值计算方法;然后,提出了基于模糊C-均值聚类算法的动态等值计算方法及其流程图。最后,对某区域进行FCM机组分群,并进行动态等值计算,结果表明,采用基于FCM的动态等值方法,等值前后的动态特性基本一致,该方法具有良好的实用性。 展开更多
关键词 模糊C-均值算法 动态等值 参数
在线阅读 下载PDF
基于模糊C均值聚类算法的浆液循环泵节能运行优化方法研究
20
作者 闫庚 《自动化应用》 2024年第14期175-177,共3页
在浆液循环泵运行阶段,受客观应用需求波动的影响,其功耗相对较高。为此,提出基于模糊C均值聚类算法的浆液循环泵节能运行优化方法。在浆液循环泵运行数据特征提取阶段,采用基于无监督的深度学习模型,借助随机初始化的卷积核,对输入的... 在浆液循环泵运行阶段,受客观应用需求波动的影响,其功耗相对较高。为此,提出基于模糊C均值聚类算法的浆液循环泵节能运行优化方法。在浆液循环泵运行数据特征提取阶段,采用基于无监督的深度学习模型,借助随机初始化的卷积核,对输入的数据进行卷积计算,获取低维空间的特征映射,随后通过反卷积确定浆液循环泵运行参数特征;在节能运行优化阶段,引入模糊C均值聚类算法,通过聚类具有相同特征的数据,将相同聚类内功耗最小的参数作为同类运行工况下的优化结果。结果显示,测试循环泵的功耗虽然会随着通过的最大颗粒粒度的增加而呈稳定增大的趋势,但对应的增幅较小,与对照组相比,其分别在节能程度和节能适应性方面表现出了明显优势。 展开更多
关键词 模糊C均值算法 浆液循环泵 深度学习模型 特征提取
在线阅读 下载PDF
上一页 1 2 219 下一页 到第
使用帮助 返回顶部