The simulation techniques of hardware-in-loop simulation(HLS) of homing antitank missile based on the personal computer (PC) are discussed. The PC and MCS-96 chip controller employ A/D and D/A boards (with photoelectr...The simulation techniques of hardware-in-loop simulation(HLS) of homing antitank missile based on the personal computer (PC) are discussed. The PC and MCS-96 chip controller employ A/D and D/A boards (with photoelectricity isolation) to transfer measur ment and control information about homing head, gyro and rudder and utilize the digital hand shaking board to build correct communication communication protocol. In order to satisfy the real-time requirement of HLS, this paper first simplifies the aerodynamic data file reasonably, then builds a PC software with C language. The program of the controller part is made with PL/M language. The simulation of HLS based on PC is done with the same sampling period of 10ms as that of YH-F1 and the experiment results are identical to those of digital simulation of the homing anti-tank guided missile.展开更多
Molecular dynamics with the stochastic process provides a convenient way to compute structural and thermodynamic properties of chemical, biological, and materials systems. It is demonstrated that the virtual dynamics ...Molecular dynamics with the stochastic process provides a convenient way to compute structural and thermodynamic properties of chemical, biological, and materials systems. It is demonstrated that the virtual dynamics case that we proposed for the Langevin equation [J. Chem. Phys. 147, 184104 (2017)] in principle exists in other types of stochastic thermostats as well. The recommended "middle" scheme [J. Chem. Phys. 147, 034109 (2017)] of the Andersen thermostat is investigated as an example. As shown by both analytic and numerical results, while the real and virtual dynamics cases approach the same plateau of the characteristic correlation time in the high collision frequency limit, the accuracy and efficiency of sampling are relatively insensitive to the value of the collision frequency in a broad range. After we compare the behaviors of the Andersen thermostat to those of Langevin dynamics, a heuristic schematic representation thermostatting processes with molecular is proposed for understanding efficient stochastic dynamics.展开更多
For the first time detailed measurements of the DOS (density of states) for Ti3AIC2 and Ti3SiC2 are presented at temperatures between T = 10 and 100 K. For Ti3AIC2 a DFT (density functional theory) simulation of l...For the first time detailed measurements of the DOS (density of states) for Ti3AIC2 and Ti3SiC2 are presented at temperatures between T = 10 and 100 K. For Ti3AIC2 a DFT (density functional theory) simulation of lattice dynamics is compared to experimental data demonstrating a noticeable difference between the spectra especially below 40 meV. In the case of Ti3SiC2 the DFT model is augmented with MD (molecular dynamics) simulations resulting in the measured and simulated spectra resembling one another more closely but still having significant differences below 40 meV. Within the experimental spectra, there are features up to and including 20 meV which are unaccounted for by the simulation. Tracing individual atoms generated by the computer models suggests anharmonic motion of Si within the Ti3SiC2. The results presented could explain differences between calculated elastic moduli using DFT harmonic lattice dynamics simulations and results from recent experiments.展开更多
文摘The simulation techniques of hardware-in-loop simulation(HLS) of homing antitank missile based on the personal computer (PC) are discussed. The PC and MCS-96 chip controller employ A/D and D/A boards (with photoelectricity isolation) to transfer measur ment and control information about homing head, gyro and rudder and utilize the digital hand shaking board to build correct communication communication protocol. In order to satisfy the real-time requirement of HLS, this paper first simplifies the aerodynamic data file reasonably, then builds a PC software with C language. The program of the controller part is made with PL/M language. The simulation of HLS based on PC is done with the same sampling period of 10ms as that of YH-F1 and the experiment results are identical to those of digital simulation of the homing anti-tank guided missile.
文摘Molecular dynamics with the stochastic process provides a convenient way to compute structural and thermodynamic properties of chemical, biological, and materials systems. It is demonstrated that the virtual dynamics case that we proposed for the Langevin equation [J. Chem. Phys. 147, 184104 (2017)] in principle exists in other types of stochastic thermostats as well. The recommended "middle" scheme [J. Chem. Phys. 147, 034109 (2017)] of the Andersen thermostat is investigated as an example. As shown by both analytic and numerical results, while the real and virtual dynamics cases approach the same plateau of the characteristic correlation time in the high collision frequency limit, the accuracy and efficiency of sampling are relatively insensitive to the value of the collision frequency in a broad range. After we compare the behaviors of the Andersen thermostat to those of Langevin dynamics, a heuristic schematic representation thermostatting processes with molecular is proposed for understanding efficient stochastic dynamics.
文摘For the first time detailed measurements of the DOS (density of states) for Ti3AIC2 and Ti3SiC2 are presented at temperatures between T = 10 and 100 K. For Ti3AIC2 a DFT (density functional theory) simulation of lattice dynamics is compared to experimental data demonstrating a noticeable difference between the spectra especially below 40 meV. In the case of Ti3SiC2 the DFT model is augmented with MD (molecular dynamics) simulations resulting in the measured and simulated spectra resembling one another more closely but still having significant differences below 40 meV. Within the experimental spectra, there are features up to and including 20 meV which are unaccounted for by the simulation. Tracing individual atoms generated by the computer models suggests anharmonic motion of Si within the Ti3SiC2. The results presented could explain differences between calculated elastic moduli using DFT harmonic lattice dynamics simulations and results from recent experiments.