期刊文献+
共找到240篇文章
< 1 2 12 >
每页显示 20 50 100
基于VMD多阶段优化的短时交通流预测研究
1
作者 陈以 齐兴宇 +1 位作者 胡水源 姚宇琛 《计算机仿真》 2025年第1期126-132,共7页
针对交通流数据存在的随机性与非线性等导致短时交通流预测精度不高的问题,给出一种多阶段优化策略和改进澳洲野狗算法(Improved Dingo Optimization Algorithm, IDOA)优化LSSVM、LSTM和XGBoost参数的组合预测模型(MO-IDOA-LLX)。使用... 针对交通流数据存在的随机性与非线性等导致短时交通流预测精度不高的问题,给出一种多阶段优化策略和改进澳洲野狗算法(Improved Dingo Optimization Algorithm, IDOA)优化LSSVM、LSTM和XGBoost参数的组合预测模型(MO-IDOA-LLX)。使用变分模态分解(Variational Modal Decomposition, VMD)将交通流分解,借助样本熵(Sample Entropy, SE)将子序列重组,得到趋势、细节和随机分量并采用相空间重构算法(Phase Space Reconstruction, PSR)对其进行处理。通过4个基准函数验证IDOA算法性能。对重构后的分量分别建立IDOA-LSSVM,IDOA-LSTM以及IDOA-XGBoost三个子模型,叠加各子模型的预测值得到预测结果。实验结果表明:其它预测模型相比,上述模型预测精度均有不同程度的提升,输出的预测结果更接近真实值。 展开更多
关键词 短时交通流预测 组合预测模型 改进澳洲野狗优化算法 变分模态分解 样本熵
在线阅读 下载PDF
CPO-BiLSTM模型在短时交通流预测中的应用
2
作者 庄伟卿 余晗彧 《交通科技与经济》 2025年第1期1-7,共7页
短时交通流预测是智能交通系统的核心,可以有效减缓交通拥堵、提升应急响应效率。为进一步提高短时交通流量的预测精度,提出一种基于冠豪猪优化算法-双向长短期记忆网络(CPO-BiLSTM)的组合模型。该模型利用冠豪猪优化算法(CPO)的动态适... 短时交通流预测是智能交通系统的核心,可以有效减缓交通拥堵、提升应急响应效率。为进一步提高短时交通流量的预测精度,提出一种基于冠豪猪优化算法-双向长短期记忆网络(CPO-BiLSTM)的组合模型。该模型利用冠豪猪优化算法(CPO)的动态适应和全局均衡特性对双向长短期记忆网络(BiLSTM)的超参数进行寻优赋值,进而提升模型的泛化能力与训练效率。采用公路交通流数据集,将CPO-BiLTM模型与其他预测模型进行训练和测试比对分析,结果表明CPO-BiLSTM拥有更好的时间序列数据拟合能力,其平均绝对误差为16.8982、均方根误差为23.4424、决定系数为0.98229、剩余预测偏差为7.5159、平均绝对百分比误差为3.4243%,均为最优项,说明该模型能够有效提高预测的准确度和可靠性。 展开更多
关键词 公路交通 智能交通系统 短时交通流预测 冠豪猪优化算法 双向长短期记忆网络
在线阅读 下载PDF
时空相关的道路网络短时交通流预测模型 被引量:1
3
作者 张俊溪 曲仕茹 +1 位作者 张志腾 毕杨 《北京交通大学学报》 CAS CSCD 北大核心 2024年第3期74-82,共9页
为有效解决复杂路网短时交通流预测问题中涉及的时空特征挖掘问题,提出一种基于改进长短时记忆神经网络(Improved Long Short-Term Memory, ILSTM)的交通流预测模型.首先,通过改进的遗传算法对长短时记忆神经网络(Long Short-Term Memor... 为有效解决复杂路网短时交通流预测问题中涉及的时空特征挖掘问题,提出一种基于改进长短时记忆神经网络(Improved Long Short-Term Memory, ILSTM)的交通流预测模型.首先,通过改进的遗传算法对长短时记忆神经网络(Long Short-Term Memory, LSTM)模型初始参数进行优化获得最优参数组合,解决LSTM初始参数设置对输出结果影响较大的问题.其次,针对复杂路网多路段交通流预测中遇到的空间特征提取问题,通过挖掘相关路段对目标路段交通流预测的影响程度,重新构建LSTM模型的损失函数,采用路网中相关路段对目标路段的影响系数,以损失函数输出值最小为终止条件,构建ILSTM模型.最后,选择加州公路局交通数据进行模型验证实验,采用遗传算法优化LSTM模型(Genetic Algorithm-LSTM, GA-LSTM)和单纯LSTM模型,以及皮尔森相关系数与LSTM组合模型(Pearson Correlation Coefficient-LSTM,PCC-LSTM),对工作日和周末数据的多次实验结果进行对比分析.实验结果表明:ILSTM模型能够充分考虑复杂路网交通流的时间和空间特征,预测平均误差约为1.16%,在收敛效率和预测精度方面均优于其他模型. 展开更多
关键词 智能交通 短时交通流预测 时空相关 短时记忆神经网络 损失函数
在线阅读 下载PDF
基于深度学习的短时交通流预测方法综述与仿真研究 被引量:2
4
作者 朱仕威 叶宝林 吴维敏 《软件导刊》 2024年第2期182-193,共12页
近年来,随着城市路网交通检测设备和城市数据存储基础设施的升级换代以及深度学习技术的快速发展,应用深度学习技术解决城市路网短时交通流预测问题已成为智能交通领域的一个研究热点。不同于传统短时交通流预测方法,基于深度学习的短... 近年来,随着城市路网交通检测设备和城市数据存储基础设施的升级换代以及深度学习技术的快速发展,应用深度学习技术解决城市路网短时交通流预测问题已成为智能交通领域的一个研究热点。不同于传统短时交通流预测方法,基于深度学习的短时交通流预测方法能充分利用海量交通流数据,深入挖掘路网中不同交通节点间流量的隐藏特征与复杂时空关联,能有效提升预测短时交通流的精度。首先,简要回顾短时交通流预测方法的发展历史,重点分析、讨论基于深度学习模型的短时交通流预测方法最新技术进展和理论研究结果。其次,梳理、总结国内外广泛用于验证算法有效性和进行比较分析的公开交通流数据集。再次,阐述基于深度学习模型的短时交通流预测算法解决实际交通流预测问题的具体过程和详细步骤,基于公开测试数据集PEMS04分别对基于深度学习模型长短时记忆网络(LSTM)和门控循环单元(GRU)的短时交通流预测算法进行仿真研究,以验证算法的有效性及其相较于传统方法的优势。最后,总结、展望基于深度学习模型的短时交通流预测方法在实际应用中存在的挑战和未来研究方向。 展开更多
关键词 短时交通流预测 深度学习 时间序列 交通数据集 卷积神经网络
在线阅读 下载PDF
结合变种残差模型和Transformer的城市公路短时交通流预测
5
作者 杨鑫 陈雪妮 +1 位作者 吴春江 周世杰 《计算机应用》 CSCD 北大核心 2024年第9期2947-2951,共5页
城市公路交通流的预测受到历史交通流量和相邻车道交通流量的影响,蕴含了复杂的时空特征。针对传统交通流预测模型卷积长短时记忆(ConvLSTM)网络进行交通流预测时,未将时空特征分开提取而造成的特征提取不充分、特征信息混淆和特征信息... 城市公路交通流的预测受到历史交通流量和相邻车道交通流量的影响,蕴含了复杂的时空特征。针对传统交通流预测模型卷积长短时记忆(ConvLSTM)网络进行交通流预测时,未将时空特征分开提取而造成的特征提取不充分、特征信息混淆和特征信息缺失等问题,对ConvLSTM模型作出改进。首先,提取每个采样时刻的交通流数据的短期时间特征和空间特征,并在特定的维度下将交通流的短期时空特征融合;其次,进行残差映射;最后,将映射后的短期时空特征交由Transformer模型捕捉交通流数据长期的时空特征,并根据所捕捉的长期特征对未来时刻每个采样点交通流进行预测。使用加州城市快速路数据对模型进行验证,以平均绝对误差(MAE)作为模型评价指标时,所提模型相较于Conv-Transformer模型,预测精度提高了18%,验证了所提模型的有效性。 展开更多
关键词 短时交通流预测 交通 时空特征提取 残差结构 TRANSFORMER 组合模型
在线阅读 下载PDF
基于季节性ARIMA模型的短时交通流预测方法研究
6
作者 俞乐澜 邵梓轩 +1 位作者 徐程 李涛 《交通世界》 2024年第25期2-5,共4页
综合道路特点、行驶时间和车辆的特征等信息,采用时间差值法筛除无效数据,剔除运营车数据;在通过序列分解与ADF-1平稳性检验后,提出基于季节性ARIMA模型的短时交通流预测技术,以探究该模型下车流量预测精度达到最佳预测效果时的最优采... 综合道路特点、行驶时间和车辆的特征等信息,采用时间差值法筛除无效数据,剔除运营车数据;在通过序列分解与ADF-1平稳性检验后,提出基于季节性ARIMA模型的短时交通流预测技术,以探究该模型下车流量预测精度达到最佳预测效果时的最优采样间隔;采用AIC准则对参数寻优定阶,ADF检验和差分分析选择最优的差分阶层;为确保模型的可靠性,使用Ljung-Box Q检验进行白噪声检验。结果表明,时间间隔为15 min的车流量统计模型SARIMA(1,1,2)×(2,0,0)4在预测精度和稳定性方面均优于其他时间间隔和传统的ARIMA模型。同时,该方法也具有一定的通用性,可以应用于其他领域的短时流量预测。 展开更多
关键词 短时交通流预测 季节性ARIMA模型 ADF-1检验 Ljung-Box Q检验
在线阅读 下载PDF
基于图Transformer网络的城市路网短时交通流预测模型 被引量:1
7
作者 周烽 王世璞 张坤鹏 《科学技术与工程》 北大核心 2024年第10期4307-4316,共10页
针对城市路网短时交通流预测问题,在考虑路网交通状态时空相关性基础上,提出了一种基于图Transformer(graph transformer,Graformer)的预测方法。该方法将多条路段的交通状态预测问题转化为图节点状态预测问题,针对区分相同结构的空间... 针对城市路网短时交通流预测问题,在考虑路网交通状态时空相关性基础上,提出了一种基于图Transformer(graph transformer,Graformer)的预测方法。该方法将多条路段的交通状态预测问题转化为图节点状态预测问题,针对区分相同结构的空间路网结构图,将带有边的图同构网络(graph isomorphism network with edges,GINE)和Transformer网络相结合,对交通状态在路网层面的时空相关性进行建模,从而实现城市路网短时交通流预测。具体来说,Graformer模型首先利用长短期记忆网络(long short-term memory,LSTM)对交通数据的时序信息进行预处理,接着采用基于GINE与Transformer的全局注意力机制提取交通数据的空间特征,最后实现路网各路段交通流的同步预测。 展开更多
关键词 短时交通流预测 图同构网络 TRANSFORMER 时空相关性
在线阅读 下载PDF
基于CS算法优化的SVM短时交通流预测模型 被引量:2
8
作者 兰添贺 曲大义 +1 位作者 陈昆 刘浩敏 《青岛理工大学学报》 CAS 2024年第1期134-140,共7页
为了提高短时交通流预测模型的准确度,提出一种基于布谷鸟搜索算法(Cuckoo Search,CS)优化的支持向量机(Support Vector Machine,SVM)短时交通流预测模型(CS-SVM)。选取青岛市内的多组典型城市路段作为研究对象,将观测收集的车流量数据... 为了提高短时交通流预测模型的准确度,提出一种基于布谷鸟搜索算法(Cuckoo Search,CS)优化的支持向量机(Support Vector Machine,SVM)短时交通流预测模型(CS-SVM)。选取青岛市内的多组典型城市路段作为研究对象,将观测收集的车流量数据作为学习样本。利用CS算法对SVM模型的主要参数进行优化,建立以SVM为基础的短时交通流预测模型。最后将CS-SVM模型与多种现有模型进行仿真分析。结果表明,CS-SVM模型相比其他传统模型具有更低的预测误差和更好的稳定性,CS-SVM模型相比SVM模型的MAE值下降了6.56%,RMSE值下降了7.36%。因此该模型能够为城市交通出行和交通流理论研究提供有效帮助。 展开更多
关键词 短时交通流预测 城市道路交通 布谷鸟搜索算法 支持向量机
在线阅读 下载PDF
基于VMD-ISSA-LSTM的短时交通流预测研究
9
作者 庞学丽 宋坤 +2 位作者 姚红云 李一博 曹志富 《现代电子技术》 北大核心 2024年第8期31-36,共6页
针对城市短时交通流随机波动性强、可靠性低、预测精度差等问题,将变分模态分解(VariationalMode Decomposition,VMD)和改进麻雀搜索算法(ImproveSparrowSearchAlgorithm,ISSA)与长短期记忆(LongShort-Term Memory, LSTM)神经网络相结合... 针对城市短时交通流随机波动性强、可靠性低、预测精度差等问题,将变分模态分解(VariationalMode Decomposition,VMD)和改进麻雀搜索算法(ImproveSparrowSearchAlgorithm,ISSA)与长短期记忆(LongShort-Term Memory, LSTM)神经网络相结合,建立一种短时交通流预测模型(VMD-ISSA-LSTM)。首先利用VMD对历史原始交通流数据进行分解;然后采用佳点集、正弦函数扰动和Tent混沌映射等策略对标准的SSA算法加以改进,增强ISSA算法的寻优能力;最后,将每个分量送入ISSA-LSTM中进行预测,同时将预测结果线性叠加,得到交通流量预测值。以上海市中山北路-曹杨路口2018年11月1日—30日的历史交通数据对模型进行验证。结果表明,与LSTM、VMD-LSTM、VMD-SSA-LSTM等传统预测模型相比,VMD-ISSA-LSTM模型的预测结果的平均绝对百分比误差为1.278 4%,能够更好地应用于短时交通流预测中。 展开更多
关键词 短时交通流预测 变分模态分解 改进麻雀搜索算法 长短期记忆神经网络 佳点集 正弦函数扰动 Tent混沌映射
在线阅读 下载PDF
短时交通流预测方法分析研究 被引量:1
10
作者 牛巧丽 《中国储运》 2024年第5期119-120,共2页
1.引言近年来,由于城市居民生活水平不断提高,机动车拥有量持续上涨,以及节假日集中出行的特征,导致高速公路交通负荷日益增强,交通拥堵现象频发。造成交通拥堵现象的原因多种多样,在道路硬件建设不可能短期实现的情况下,如果能够预测... 1.引言近年来,由于城市居民生活水平不断提高,机动车拥有量持续上涨,以及节假日集中出行的特征,导致高速公路交通负荷日益增强,交通拥堵现象频发。造成交通拥堵现象的原因多种多样,在道路硬件建设不可能短期实现的情况下,如果能够预测不同线路车流情况,可以对出行者出行进行引导,控制交通流量,减少交通拥堵。 展开更多
关键词 机动车拥有量 短时交通流预测 交通负荷 交通拥堵 交通 高速公路 居民生活水平 硬件建设
在线阅读 下载PDF
基于时序数据分解重构的短时交通流预测方法
11
作者 邴其春 赵盼盼 +2 位作者 任参政 王雪倩 赵一鸣 《交通信息与安全》 CSCD 北大核心 2024年第6期112-122,共11页
为了从短时交通流数据中提取蕴含丰富信息的特征分量,进一步提升预测精度,将基于参数优化的变分模态分解(variational mode decomposition,VMD)、递归量化分析(recurrence quantification analysis,RQA)和双向门控循环单元(bidirectiona... 为了从短时交通流数据中提取蕴含丰富信息的特征分量,进一步提升预测精度,将基于参数优化的变分模态分解(variational mode decomposition,VMD)、递归量化分析(recurrence quantification analysis,RQA)和双向门控循环单元(bidirectional gated recurrent unit,BIGRU)模型相组合,构建了1种基于时序数据分解重构的短时交通流预测方法。采用融合鱼鹰和柯西变异的麻雀优化算法(osprey cauchy sparrow search algorithm,OCSSA)确定变分模态分解的的模态分量个数k和惩罚因子α,获得k个相对平稳的固有模态分量;通过递归量化分析将分解后的模态分量重构为确定性分量、波动分量和趋势分量;在此基础上,针对各重构分量分别构建BIGRU预测模型,并利用BIGRU模型将各重构分量预测结果进行非线性集成,得到最终的预测结果。采用上海市南北快速路和加州高速路网流量实测数据进行实例验证,结果表明:在NBDX08(1)数据集中,相对应的平均绝对误差、均方根误差和平均绝对百分比误差较其他模型平均降低了29.1%,24.5%,46.1%;在760101号数据集中,误差平均降低了19.05%,19.69%,16.46%,验证了本文方法对不同分量进行分解重构可以较为准确的划分和学习交通流分量的特征,在控制模型计算复杂度的同时进一步提升了预测精度。 展开更多
关键词 交通运输规划 短时交通流预测 双向门控循环单元 变分模态分解 递归量化分析
在线阅读 下载PDF
改进麻雀搜索算法优化BP神经网络的短时交通流预测
12
作者 王珅 李昕光 +1 位作者 詹郡 吕桐 《青岛理工大学学报》 CAS 2024年第1期126-133,140,共9页
针对BP神经网络预测短时交通流量过于依赖初始参数的问题,提出一种基于改进麻雀搜索算法(ISSA)来优化BP神经网络的短时交通流预测模型(ISSA-BP)。针对标准麻雀搜索算法(SSA)易收敛于原点,容易陷入局部最优等问题,对麻雀群体中的发现者... 针对BP神经网络预测短时交通流量过于依赖初始参数的问题,提出一种基于改进麻雀搜索算法(ISSA)来优化BP神经网络的短时交通流预测模型(ISSA-BP)。针对标准麻雀搜索算法(SSA)易收敛于原点,容易陷入局部最优等问题,对麻雀群体中的发现者和部分加入者的位置更新公式分别进行改进,改进后的发现者将基于搜索维度的大小和当前最优值的位置来进行全局搜索,部分加入者将根据其与最优位置之间的距离来进行全局搜索。通过实验对BP,PSO-BP,SSA-BP,ISSA-BP 4种短时交通流预测模型的预测效果进行对比分析,结果显示,ISSA-BP短时交通流预测模型的误差最小,ISSA-BP模型相较BP模型在MAE评价指标上的预测精度提升了48.85%,有着更好的预测精度。 展开更多
关键词 短时交通流预测 算法优化 改进麻雀搜索算法 BP神经网络 基准测试函数
在线阅读 下载PDF
基于K-means与GRNN的高原山区高速公路短时交通流预测
13
作者 林美 梁艳洁 陆彬 《交通节能与环保》 2024年第2期67-73,共7页
为了研究可适用于高原山区高速公路短时交通流的预测方法,以及预测方法思路对绩效的影响,提出基于广义回归神经网络(General Regression Neural Network,GRNN),构建K均值聚类算法(K-means clustering algorithm,K-means)与GRNN混合预测... 为了研究可适用于高原山区高速公路短时交通流的预测方法,以及预测方法思路对绩效的影响,提出基于广义回归神经网络(General Regression Neural Network,GRNN),构建K均值聚类算法(K-means clustering algorithm,K-means)与GRNN混合预测方法思路,即通过K-means和绩效指标判断GRNN模型参数最佳值,进而建立最佳预测模型。与传统上通过经验或一定指标判断模型参数值的思路相比,采用K-means和GRNN混合预测思路得出的模型参数值更佳,且模型RMSE、MAE最高可分别改善45.92%、45.05%,则构建的混合预测方法思路是科学有效的,可为高原山区交通流预测方法优化提供借鉴。 展开更多
关键词 运输规划与管理 短时交通流预测 GRNN K-MEANS 高原山区高速公路
在线阅读 下载PDF
短时交通流预测模式分析
14
作者 贾慧 张睿哲 《中国储运》 2024年第12期143-143,共1页
在早期的交通流预测中,历史平均法是最常使用的一种预测方法。它有着用法简单,计算速度较快的优点,但缺点也很明显,较低的精度使得它不能处理突然发生以及规模复杂的情况,一般适用于对准确度要求不高的静态模型[1]。近年来,人工智能的... 在早期的交通流预测中,历史平均法是最常使用的一种预测方法。它有着用法简单,计算速度较快的优点,但缺点也很明显,较低的精度使得它不能处理突然发生以及规模复杂的情况,一般适用于对准确度要求不高的静态模型[1]。近年来,人工智能的兴起促使交通领域开始广泛应用深度学习的神经网络模型来预测城市道路的交通流,相较传统的基于线性理论的方法,深度学习模型能够更好地捕捉交通流数据的动态特性,并具有更出色的性能。本文将重点介绍基于深度学习的短时交通流预测模型。 展开更多
关键词 人工智能 神经网络模型 深度学习 准确度要求 短时交通流预测 静态模型 交通数据 平均法
在线阅读 下载PDF
基于STAtt-DGCN模型的高速公路短时交通流预测
15
作者 唐嘉立 舒宏柯 +1 位作者 黄小峰 陈梦宇 《市政技术》 2024年第11期84-91,126,共9页
短时交通流精准预测是高速公路交通运行状态精细化监管的重要手段,有助于提前监测高速公路潜在车流拥挤事件并及时管控。国内外学者已经从数理统计、数据驱动的维度提出了多种短时交通流的预测方法,虽然成果颇丰,但对交通流数据在时间... 短时交通流精准预测是高速公路交通运行状态精细化监管的重要手段,有助于提前监测高速公路潜在车流拥挤事件并及时管控。国内外学者已经从数理统计、数据驱动的维度提出了多种短时交通流的预测方法,虽然成果颇丰,但对交通流数据在时间关联性、空间关联性方面的共同建模能力不足,导致预测精度仍然有提升的空间。基于此,笔者提出了一种时空注意力扩散图卷积模型(STAtt-DGCN),来进行高速公路交通流的短时预测。该模型依托经典的时间注意力机制、空间注意力机制和图卷积网络,设计了时空模块、时空卷积模块以及扩散图卷积网络模块,来分别建立交通流数据在时间、空间维度的关联性,从而使预测精度得到有效提升。选取了江西省某高速公路3个月的ETC数据集来验证所提模型的性能,并选用ARIMA、LSTM、STGCN等常见基线模型来进行模型的对比评估。实验结果表明:STAtt-DGCN模型几乎在每个月的数据集上都展现出较好的预测能力。以2022年4月为例,与最具挑战的STGCN基线模型相比,所提模型在平均绝对误差、均方绝对误差、平均绝对误差上分别下降了17.9%、40.0%、11.0%。这意味着STAtt-DGCN模型的预测精度相较于基准方法有较大提升,可应用于高速公路交通流精准预测。 展开更多
关键词 短时交通流预测 高速公路 深度学习模型 时空注意力机制 扩散图卷积网络
在线阅读 下载PDF
高斯过程回归短时交通流预测方法 被引量:21
16
作者 康军 段宗涛 +2 位作者 唐蕾 刘研 王超 《交通运输系统工程与信息》 EI CSCD 北大核心 2015年第4期51-56,共6页
已有的短时交通流预测方法均属于确定性预测,无法对预测的不确定性进行定量分析.针对上述问题,提出了一种基于高斯过程回归的短时交通流预测方法.通过该方法在对短时交通流进行预测的同时还可以得到预测的方差估计值,并依此可以确定预... 已有的短时交通流预测方法均属于确定性预测,无法对预测的不确定性进行定量分析.针对上述问题,提出了一种基于高斯过程回归的短时交通流预测方法.通过该方法在对短时交通流进行预测的同时还可以得到预测的方差估计值,并依此可以确定预测值的95%置信区间.在仿真实例中,在相同条件下对所提方法与支持向量机预测方法进行比较.仿真结果表明,高斯过程回归短时交通流预测方法不仅与支持向量机预测方法具有相近的预测精度,其中均方根误差为12.09,绝对值误差为118.42,相对误差为17.32%,而且能够获得预测结果的方差估计值,从而有效实现短时交通流概率意义上的预测. 展开更多
关键词 智能交通 短时交通流预测 高斯过程回归 短时交通 概率性预测 方差估计
在线阅读 下载PDF
基于GA-LSSVR模型的路网短时交通流预测研究 被引量:19
17
作者 陈小波 刘祥 +3 位作者 韦中杰 梁军 蔡英凤 陈龙 《交通运输系统工程与信息》 EI CSCD 北大核心 2017年第1期60-66,81,共8页
目前,很多短时交通流预测方法仅利用某一路段历史数据的时间相关性或者道路上下游路段的时空相关性进行交通流预测,未充分考虑路网所有路段之间的时空相关性.提出了一种基于稀疏混合遗传算法优化的最小二乘支持向量回归(LSSVR)模型,并... 目前,很多短时交通流预测方法仅利用某一路段历史数据的时间相关性或者道路上下游路段的时空相关性进行交通流预测,未充分考虑路网所有路段之间的时空相关性.提出了一种基于稀疏混合遗传算法优化的最小二乘支持向量回归(LSSVR)模型,并应用于路网短时交通流预测.该预测模型不仅可以自动优化LSSVR模型参数,而且可以从高维路网交通流数据中选择有助于交通流预测的变量子集.实验结果表明,与LSSVR模型相比,所提方法具有更好的预测能力;而且,少量时空变量被选择出来构建预测模型,极大减少了信息冗余,改进了模型可解释性. 展开更多
关键词 智能交通 变量选择 稀疏混合遗传算法 短时交通流预测 最小二乘支持向量回归
在线阅读 下载PDF
大数据背景下城市短时交通流预测 被引量:18
18
作者 杨正理 陈海霞 +1 位作者 王长鹏 徐智 《公路交通科技》 CAS CSCD 北大核心 2019年第2期136-143,共8页
为了在尽可能短的时间内挖掘和分析海量城市交通流数据,实时准确地预测城市短时交通流状态,建立有效的城市交通诱导系统,改善城市交通管理水平。根据城市交通大数据的来源异同、数据量大、种类繁多等特征,提出大数据背景下的城市短时交... 为了在尽可能短的时间内挖掘和分析海量城市交通流数据,实时准确地预测城市短时交通流状态,建立有效的城市交通诱导系统,改善城市交通管理水平。根据城市交通大数据的来源异同、数据量大、种类繁多等特征,提出大数据背景下的城市短时交流状态预测新方法。新方法综合利用了随机森林算法进行机器学习的优势,克服了决策树算法的一些不足,又保留了决策树算法的优点;同时,新方法在大数据体系下实现了并行运算,提高了新方法各方面的学习性能,能够更快速、更加精确地实现城市短时交通流状态预测,并为城市交通诱导系统提出合理的交通建议。首先,针对城市交通流大数据的特征和城市短时交通流状态的预测需求,采用通用大数据分析处理平台构建城市交通流大数据管理平台,实现城市交通流大数据的整合、分布式存储与管理;然后,结合云计算技术,利用并行化计算模型MapReduce对随机森林算法实现并行化,增强算法的数据分析与处理效率,提高算法对大数据的处理能力;最后,采用并行化的随机森林算法对城市交通流大数据进行计算与处理,实现城市短时交通流状态的高效和实时预测。试验结果表明,并行化的随机森林算法的数据分析与处理效率、对城市短时交通流状态的预测精度,以及在不同数据集上对大数据的处理能力等各方面的性能均优于传统的预测方法。 展开更多
关键词 交通工程 城市短时交通流预测 随机森林算法 大数据 云计算
原文传递
基于粒子群优化投影寻踪回归模型的短时交通流预测 被引量:11
19
作者 邴其春 龚勃文 +2 位作者 林赐云 杨兆升 曲鑫 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第12期4277-4282,共6页
针对短时交通流数据的高度复杂性、随机性和非稳定性,为了进一步提高短时交通流预测的精度,提出一种基于粒子群优化投影寻踪回归模型的短时交通流预测方法。通过灰色关联度分析确定交通流预测影响因子,然后采用粒子群优化算法构建非参... 针对短时交通流数据的高度复杂性、随机性和非稳定性,为了进一步提高短时交通流预测的精度,提出一种基于粒子群优化投影寻踪回归模型的短时交通流预测方法。通过灰色关联度分析确定交通流预测影响因子,然后采用粒子群优化算法构建非参数投影寻踪回归模型,并利用上海市南北高架快速路的感应线圈实测数据进行实验验证和对比分析。实验结果表明:PSO-PPR模型的短时交通流预测效果明显提高,其平均预测精度分别比ARIMA模型和BPNN模型提高37.8%和27.2%。 展开更多
关键词 智能交通系统 短时交通流预测 投影寻踪回归模型 粒子群优化 灰色关联度分析
在线阅读 下载PDF
基于K-邻域非参数回归短时交通流预测方法 被引量:36
20
作者 张晓利 贺国光 陆化普 《系统工程学报》 CSCD 北大核心 2009年第2期178-183,共6页
实时、准确的短时交通流预测是交通控制与诱导中的一个关键问题和难点.非参数回归是解决短时交通流预测问题的较好方法,但是案例库生成难和搜索速度慢是其目前实际应用的两大障碍.为此,提出一种基于平衡二叉树的K-邻域非参数回归(KNN-N... 实时、准确的短时交通流预测是交通控制与诱导中的一个关键问题和难点.非参数回归是解决短时交通流预测问题的较好方法,但是案例库生成难和搜索速度慢是其目前实际应用的两大障碍.为此,提出一种基于平衡二叉树的K-邻域非参数回归(KNN-NPR)的短时交通流预测方法,采用聚类方法和平衡二叉树结构建立案例数据库,以提高预测精度和满足实时性要求.给出了预测示例说明了方法的有效性. 展开更多
关键词 短时交通流预测 非参数回归 聚类 平衡二叉树
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部