期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
基于RIME-IAOA的混合模型短期光伏功率预测
1
作者 王仁明 魏逸明 席磊 《三峡大学学报(自然科学版)》 CAS 北大核心 2025年第1期81-88,共8页
光伏发电在如今的新能源发展中逐渐成为重点,其中光伏功率预测成为研究的主要方向.为了提升光伏功率预测的精度和效率,提出了RIME-VMD-IAOA-LSTM模型.该模型通过霜冰优化算法(RIME)优化变分模态分解(VMD)的参数来提升分解效率;引入余弦... 光伏发电在如今的新能源发展中逐渐成为重点,其中光伏功率预测成为研究的主要方向.为了提升光伏功率预测的精度和效率,提出了RIME-VMD-IAOA-LSTM模型.该模型通过霜冰优化算法(RIME)优化变分模态分解(VMD)的参数来提升分解效率;引入余弦控制因子的动态边界策略来控制算数优化算法(AOA)数值的增长速率从而提升算法的精度和稳定性;利用自适应T分布变异策略来改进AOA的局部搜索能力和全局开发能力,更好地避免局部最优解.两种智能优化算法的加入使得整体模型的预测效率和速度都有很大提升,实验结果表明组合模型RIMEVMD-IAOA-LSTM相比于其他预测模型有较高的光伏功率预测精度. 展开更多
关键词 霜冰优化算法 变分模态分解 算术优化算法 余弦控制因子策略 自适应T分布策略 短期光伏功率预测
在线阅读 下载PDF
考虑季节特性与数据窗口的短期光伏功率预测组合模型
2
作者 张静 熊国江 《电力工程技术》 北大核心 2025年第1期183-192,共10页
光伏功率的间歇性和随机性因季节变化呈现出不同的特点,考虑季节特性对提高光伏功率预测精度具有重要意义。因此,文中提出一种考虑季节特性和数据窗口的短期光伏功率预测组合模型。首先,通过皮尔逊相关系数法确定对光伏功率贡献度高的... 光伏功率的间歇性和随机性因季节变化呈现出不同的特点,考虑季节特性对提高光伏功率预测精度具有重要意义。因此,文中提出一种考虑季节特性和数据窗口的短期光伏功率预测组合模型。首先,通过皮尔逊相关系数法确定对光伏功率贡献度高的气象因素,降低预测模型的输入特征维数。其次,对比不同季节下不同模型的光伏功率预测精度,选择光伏功率预测误差最小且相关性最低的2个模型构建组合模型,即门控循环单元(gated recurrent unit,GRU)模型和极限梯度提升(extreme gradient boosting,XGboost)模型。然后,分析历史气象数据中不同输入窗口对GRU-XGboost模型预测精度的影响,确定最优数据窗口。最后,在此基础上分别采用GRU和XGboost对光伏功率进行预测,将2个预测结果加权组合得到最终预测结果。结果表明,与其他模型相比,所提模型具有更强的适应性和更高的预测精度。 展开更多
关键词 短期光伏功率预测 季节特性 数据窗口 门控循环单元(GRU) 极限梯度提升(XGboost) 组合模型
在线阅读 下载PDF
基于SMD与WaOA-CNN-LSTM的短期光伏功率预测
3
作者 武文珍 毛伟进 《上海电机学院学报》 2024年第5期292-298,共7页
针对当前光伏功率预测模型所面临因数据的复杂性、信号处理过程的噪声干扰、非线性特征难以提取等问题而导致的预测精度低、稳定性差等多方面挑战,提出了一种融合二次模态分解(SMD)和基于海象算法(WaOA)优化CNN-LSTM神经网络的组合预测... 针对当前光伏功率预测模型所面临因数据的复杂性、信号处理过程的噪声干扰、非线性特征难以提取等问题而导致的预测精度低、稳定性差等多方面挑战,提出了一种融合二次模态分解(SMD)和基于海象算法(WaOA)优化CNN-LSTM神经网络的组合预测模型。首先,利用完全自适应噪声集合经验模态分解(CEEMDAN)对光伏数据进行分解,并结合K均值聚类算法(K-means)将多个子序列重构成低频、中频以及高频序列;其次,将含有残余噪声的高频序列采用变分模态分解(VMD)进行二次分解处理;最后,对各分量分别构建CNN-LSTM模型,并利用WaOA算法对网络参数进行寻优,将各分量的预测结果进行叠加,得到最终预测结果。SMD处理方法解决了传统数据处理方法模态混叠、低频分量过多和高频分量噪声残余等问题,CNN-LSTM模型能够捕捉数据中的空间关系和长期依赖关系,WaOA算法对模型参数的优化提高了模型的性能和效率。选取陕西某地光伏电站数据进行测试,通过多组对比实验进行验证,结果表明:所提方法具有更高的预测精度。 展开更多
关键词 二次模态分解 短期光伏功率预测 海象优化算法 深度学习
在线阅读 下载PDF
基于QMD-HBi GRU的短期光伏功率预测方法 被引量:2
4
作者 吉兴全 赵国航 +3 位作者 叶平峰 孟祥剑 杨明 张玉敏 《高电压技术》 EI CAS CSCD 北大核心 2024年第9期3850-3859,I0002-I0005,共14页
为了解决光伏功率数据固有的强不确定性导致单一预测模型预测精度不高的问题,提出一种基于二次模态分解和混合双向门控循环单元模型(hybrid bi-directional gated recurrent unit, HBiGRU)的短期光伏功率预测方法。首先,为应对光伏功率... 为了解决光伏功率数据固有的强不确定性导致单一预测模型预测精度不高的问题,提出一种基于二次模态分解和混合双向门控循环单元模型(hybrid bi-directional gated recurrent unit, HBiGRU)的短期光伏功率预测方法。首先,为应对光伏功率数据的不确定性,基于自适应噪声完备集合经验模态分解、样本熵和变分模态分解对光伏功率数据进行处理,得到一系列较为平稳的本征模函数分量;其次,构建HBi GRU模型以充分挖掘各分量与光伏功率影响因素之间的特征关系,得到各分量预测结果;最后,将各分量预测结果叠加得到短期光伏功率预测结果。以澳大利亚某地光伏电站数据进行测试,仿真结果表明:所提集成预测模型能够有效提高短期光伏功率预测精度,与其他预测模型相比,其归一化平均绝对误差和均方根误差分别降低了3.21%和5.04%,决定系数提高了22.7%。 展开更多
关键词 短期光伏功率预测 混合双向门控循环单元 自适应噪声完备集合经验模态分解 变分模态分解 二次模态分解 深度学习
在线阅读 下载PDF
基于数值天气预报因子扩充和改进集成学习的高寒地区短期光伏功率预测 被引量:1
5
作者 刘伟 杨凯宁 《电气技术》 2024年第8期1-10,17,共11页
高寒地区光伏系统因气象条件影响,其光伏功率表现出更显著的波动性。本文以黑龙江某光伏电站为例,提出基于数值天气预报(NWP)因子扩充和改进常规Stacking集成学习的高寒地区短期光伏功率预测方法。针对高寒地区光伏功率波动大的特点,引... 高寒地区光伏系统因气象条件影响,其光伏功率表现出更显著的波动性。本文以黑龙江某光伏电站为例,提出基于数值天气预报(NWP)因子扩充和改进常规Stacking集成学习的高寒地区短期光伏功率预测方法。针对高寒地区光伏功率波动大的特点,引入NWP差分因子作为交叉特征,提升模型对天气变化的敏感性。随后,以极致梯度提升(XGBoost)和长短期记忆(LSTM)网络为基学习器,时间卷积网络(TCN)为元学习器,构建集成学习模型,并利用前向验证优化模型结构。最后,进行对比实验分析,结果表明本文所提方法具有更高的预测准确度和稳定性。 展开更多
关键词 功率短期预测 高寒地区 Stacking集成学习 数值天气预报(NWP)差分因子 前向验证
在线阅读 下载PDF
基于注意力机制的短期光伏功率预测
6
作者 林瑞航 朱宗玖 《现代计算机》 2024年第15期84-87,92,共5页
针对传统的光伏功率预测难度大、精度低等问题,提出一种基于注意力机制的短期光伏功率预测模型,将光伏电站的历史记录数据进行处理后导入到预测模型进行训练,利用CNN局部特征提取功能能力以及BiLSTM处理序列信号的能力,再结合Attention... 针对传统的光伏功率预测难度大、精度低等问题,提出一种基于注意力机制的短期光伏功率预测模型,将光伏电站的历史记录数据进行处理后导入到预测模型进行训练,利用CNN局部特征提取功能能力以及BiLSTM处理序列信号的能力,再结合Attention机制对不同特征进行权重系数分配。选取澳大利亚某光伏电站数据进行模拟仿真,将Attention-CNN-BiLSTM模型与LSTM等模型进行对比,验证了该模型有更好的预测精度。 展开更多
关键词 短期光伏功率预测 注意力机制 卷积神经网络
在线阅读 下载PDF
基于CNN-GRU与特征增强的超短期光伏功率预测
7
作者 李宇豪 杨建卫 +1 位作者 李佳瑞 刘永生 《计算机仿真》 2024年第10期83-88,共6页
超短期光伏功率预测对电力系统的实时调度有着重要意义。针对以往深度学习预测光伏输出功率重模型轻特征的特点,提出了一种基于CNN-GRU与特征增强的超短期光伏功率预测方法。首先将历史数据按照季节划分,以平抑季节性变化对光伏输出功... 超短期光伏功率预测对电力系统的实时调度有着重要意义。针对以往深度学习预测光伏输出功率重模型轻特征的特点,提出了一种基于CNN-GRU与特征增强的超短期光伏功率预测方法。首先将历史数据按照季节划分,以平抑季节性变化对光伏输出功率的影响。然后将可测数据基于其物理性质进行特征增强,使其能够被神经网络模型更充分的挖掘。最后采用CNN-GRU模型充分挖掘数据的时间与空间特征,进一步提升预测准确率。应用中国江苏某装机容量为75 MW光伏电站实际生产数据进行仿真验证,结果表明,上述方法在不同季节、天气情况下的预测精度均有较为明显的提升。 展开更多
关键词 短期光伏功率预测 特征增强 倾斜辐照度 电池温度 卷积神经网络 门控循环单元网络
在线阅读 下载PDF
基于云图特征提取的改进混合神经网络超短期光伏功率预测方法 被引量:35
8
作者 余光正 陆柳 +3 位作者 汤波 王思源 杨秀 陈汝斯 《中国电机工程学报》 EI CSCD 北大核心 2021年第20期6989-7002,共14页
光伏功率时序受多种特征因素的影响,呈现出高度的随机性和波动性。不同于分布式光伏,集中式光伏具有地理位置与辐照水平的同一性,运动型云层的遮挡往往导致光伏功率的分钟级剧烈波动,对光伏功率预测精度提出了挑战。针对上述问题,该文... 光伏功率时序受多种特征因素的影响,呈现出高度的随机性和波动性。不同于分布式光伏,集中式光伏具有地理位置与辐照水平的同一性,运动型云层的遮挡往往导致光伏功率的分钟级剧烈波动,对光伏功率预测精度提出了挑战。针对上述问题,该文提出基于云图特征提取的改进混合神经网络超短期光伏功率预测方法。首先,通过提取并匹配彩色云图局部特征描述子,提出基于地基云图的云轨迹跟踪方法;其次,为评估运动型云团引起的超短期辐照度变化,建立基于云轨迹追踪的辐照系数预测模型;为表征各特征序列的内在相关性,提出一种基于改进注意力机制(improved attentionmechanism,IAM)的卷积–长短时记忆混合神经网络(convolutional neural network-long and short-term memory network,CNN-LSTM)进行超短期光伏功率预测。在此基础上,综合天气类型与波动性聚类识别并提取功率波动过程,建立误差修正模型以进一步提高预测精度。采用西北某集中式光伏电站数据进行算例验证,结果表明,所提方法能有效提高预测精度,具有一定工程实用价值。 展开更多
关键词 地基云图 特征匹配 改进混合神经网络 波动性聚类 短期光伏功率预测
在线阅读 下载PDF
基于智能混合预测策略的短期光伏功率预测 被引量:10
9
作者 黄杨珏 张晓珂 +4 位作者 沈开程 戴小然 朱远哲 汪进锋 贾梦麒 《电网与清洁能源》 CSCD 北大核心 2023年第11期111-119,共9页
光伏发电功率的准确预测为电力系统的调度、决策提供了有力的保证条件。针对现有光伏功率预测效率低、准确性不够等问题,提出一种基于Spearman相关性分析、Kmeans++聚类和支持向量回归(SVR)的混合光伏功率预测模型。通过Spearman相关性... 光伏发电功率的准确预测为电力系统的调度、决策提供了有力的保证条件。针对现有光伏功率预测效率低、准确性不够等问题,提出一种基于Spearman相关性分析、Kmeans++聚类和支持向量回归(SVR)的混合光伏功率预测模型。通过Spearman相关性分析将冗余的输入数据进行筛选,降低模型的输入维度;利用K-means++聚类将数据划分为具有不同特征的类别,建立特征库;分别构建不同数据特征库所对应的SVR预测模型;将测试数据集划分至不同的特征库,得到对应SVR模型的预测结果。选取2021年1月1日—12月31日的武汉市相关数据进行验证,实验结果表明,在光伏系统输出功率预测上,所提Spearman-Kmeans++-SVR模型相较于传统预测模型获得了更高的预测精度和预测效率。 展开更多
关键词 Spearman相关性分析 K-means++ 支持向量回归 短期光伏功率预测
在线阅读 下载PDF
基于LightGBM-TextCNN-XGBoost的超短期光伏功率预测研究 被引量:5
10
作者 李晶晶 黄翔庚 +2 位作者 张媛媛 张新平 宋美 《电力大数据》 2023年第10期26-33,共8页
针对超短期光伏功率预测的传统方法存在的限制,本文提出了一种基于LightGBM-TextCNN-XGBoost算法的预测模型。首先,本文对原始数据进行了预处理,并使用CEEMDAN对数据进行模态分解。然后,该文将模态分解后的数据归一化,并基于GWO-FCM聚... 针对超短期光伏功率预测的传统方法存在的限制,本文提出了一种基于LightGBM-TextCNN-XGBoost算法的预测模型。首先,本文对原始数据进行了预处理,并使用CEEMDAN对数据进行模态分解。然后,该文将模态分解后的数据归一化,并基于GWO-FCM聚类算法将数据聚类为三种天气类型。接着,该文将数据划分为训练集和测试集,分别对LightGBM和TextCNN算法进行训练。最后,文章基于Stacking思想建立了基于LightGBM-TextCNN-XGBoost算法的模型进行预测,并使用R 2等评价指标对预测模型进行了综合评价。实验结果显示,文中模型的预测效果非常优秀。这种模型能够精确地预测光伏发电的功率,有助于光伏电站降低损失,从而确保微电网的安全稳健运行。 展开更多
关键词 短期光伏功率预测 LightGBM-TextCNN-XGBoost GWO-FCM聚类算法
在线阅读 下载PDF
基于GRA-EGA-LSTM模型的短期光伏功率预测 被引量:1
11
作者 黄宇航 李萍 +1 位作者 简定辉 梁志洋 《电工技术》 2023年第8期86-90,共5页
对光伏发电功率进行预测可为电力系统调度提供参考,有利于电网的安全稳定运行。为了提高光伏发电功率预测精度,采用灰色关联度分析法(Grey Relation Analysis,GRA)寻找待预测日的相似日作为训练样本;采用精英保留遗传算法(Elitist Model... 对光伏发电功率进行预测可为电力系统调度提供参考,有利于电网的安全稳定运行。为了提高光伏发电功率预测精度,采用灰色关联度分析法(Grey Relation Analysis,GRA)寻找待预测日的相似日作为训练样本;采用精英保留遗传算法(Elitist Model of Genetic Algorithm,EGA)对长短期记忆网络(Long Short-Term Memory,LSTM)的超参数进行寻优;将相似日的光伏功率和气象因素数据作为训练样本代入超参数寻优后的长短期记忆网络进行预测。通过仿真测试,基于GRA-EGA-LSTM组合预测模型的短期光伏功率预测精度要优于传统的LSTM模型。 展开更多
关键词 灰色关联理论 精英保留遗传算法 短期记忆网络 短期光伏功率预测
在线阅读 下载PDF
基于多特征分析和提取的短期光伏功率预测 被引量:15
12
作者 闫钇汛 王丽婕 +3 位作者 郭洪武 王勃 车建峰 郝颖 《高电压技术》 EI CAS CSCD 北大核心 2022年第9期3734-3743,共10页
在对短期光伏发电功率预测时,多维数值天气预报(numerical weather prediction,NWP)数据中存在大量冗余和不相关特征,不仅影响预测的准确度,也会增加模型的复杂度,为此提出一种基于多特征分析和提取的短期光伏功率预测模型。通过K-mean... 在对短期光伏发电功率预测时,多维数值天气预报(numerical weather prediction,NWP)数据中存在大量冗余和不相关特征,不仅影响预测的准确度,也会增加模型的复杂度,为此提出一种基于多特征分析和提取的短期光伏功率预测模型。通过K-means++聚类选取与预测日具有相似天气类型的历史数据作为训练样本,利用一阶差分具有滤波的特性对不稳定的特征数据进行处理,同时构造新特征;引入因子分析法,考虑特征与输出功率之间的相关性并提取有效特征,由远少于特征数的公共因子作为预测模型的输入数据;最后采用XGBoost对光伏功率进行预测。对某光伏电站仿真结果表明,提出的预测模型在晴天、晴转多云和阴雨天下的均方根误差分别为5.33%、6.13%和9.5%,在非晴天模式下的预测精度较传统方法可提升3%~10%。研究结果可为复杂天气下的光伏功率预测提供参考。 展开更多
关键词 功率短期预测 K-means++聚类 特征差分 因子分析 XGBoost
在线阅读 下载PDF
基于无爬坡事件定义标准晴空集的短期光伏功率预测 被引量:2
13
作者 郭洪武 车建峰 +1 位作者 闫钇汛 王丽婕 《中国电力》 CSCD 北大核心 2023年第9期187-195,共9页
光伏功率的输出受季节、气象条件及其他因素的影响具有随机性和不确定性,恶劣天气下功率输出具有较强的波动性也加大了预测的难度。提出了一种基于无爬坡事件定义标准晴空集的短期光伏功率预测模型。通过爬坡定义提取一天内均为无爬坡... 光伏功率的输出受季节、气象条件及其他因素的影响具有随机性和不确定性,恶劣天气下功率输出具有较强的波动性也加大了预测的难度。提出了一种基于无爬坡事件定义标准晴空集的短期光伏功率预测模型。通过爬坡定义提取一天内均为无爬坡事件的样本点,将其定义为一个标准晴空集,并与历史实际功率做差,得到的差值作为输出目标变量,以数值天气预报作为输入变量,采用长短期记忆模型对差值进行建模预测,最后将标准晴空集与该预测差值做差,间接得到预测的光伏输出功率值。通过对某光伏电站进行仿真,并进行算例对比,所提模型的短期光伏功率预测精度提高了2%~4%,在恶劣天气下,该方法可以将平均绝对误差和均方根误差降低3%左右,验证了所提模型的性能和有效性。 展开更多
关键词 功率短期预测 非爬坡样本提取 标准晴空集 短期记忆模型
在线阅读 下载PDF
基于BIRCH聚类的L-Transformer分布式光伏短期发电功率预测 被引量:3
14
作者 董俊 刘瑞 +2 位作者 束洪春 罗琨 刘壮 《高电压技术》 EI CAS CSCD 北大核心 2024年第9期3883-3893,I0006-I0008,共14页
精准的分布式光伏短期发电功率预测有助于电力系统运行与功率就地平衡。该文提出一种基于BIRCH(balanced iterative reducing and clustering using hierarchies)相似日聚类的L-Transformer(LSTM-Transformer)模型进行短期光伏功率预测... 精准的分布式光伏短期发电功率预测有助于电力系统运行与功率就地平衡。该文提出一种基于BIRCH(balanced iterative reducing and clustering using hierarchies)相似日聚类的L-Transformer(LSTM-Transformer)模型进行短期光伏功率预测。首先使用BIRCH无监督聚类算法对历史数据聚类得到3种典型天气,根据聚类结果划分测试集对模型进行训练。为提高不同天气类型下的预测精度,采用双层架构的L-Transformer模型,首层通过长短期记忆网络(long short term memory,LSTM)的门控单元机制捕捉时间序列中的长期依赖关系;次层结合Transformer模型的自注意力机制聚焦于当前任务更关键的特征量,通过多注意力头与光伏数据特征量相结合生成向量,注意力头并行计算,从而高效、精确地预测短期光伏功率。实测数据验证结果表明L-Transformer模型对于不同天气类型功率预测泛化性优异、精确度高,气象数据波动大时鲁棒性强。 展开更多
关键词 深度学习 自注意力机制 多头注意力 BIRCH聚类 短期光伏功率预测 特征融合
在线阅读 下载PDF
基于数据集蒸馏的光伏发电功率超短期预测 被引量:2
15
作者 郑珂 王丽婕 +1 位作者 郝颖 王勃 《中国电机工程学报》 EI CSCD 北大核心 2024年第13期5196-5207,I0015,共13页
云是影响太阳直接辐射变化的主要因素,由于各类云的透光率不同,导致到达光伏电站的太阳辐射会随之产生波动。为解决各类云遮挡下的光伏发电功率波动大、预测模型个数多的问题,提出一种基于卫星云图和数据集蒸馏的光伏发电功率超短期预... 云是影响太阳直接辐射变化的主要因素,由于各类云的透光率不同,导致到达光伏电站的太阳辐射会随之产生波动。为解决各类云遮挡下的光伏发电功率波动大、预测模型个数多的问题,提出一种基于卫星云图和数据集蒸馏的光伏发电功率超短期预测模型。首先,基于待测场站上方的历史云图,采用Farneback光流法预测出云图;然后,根据卫星云分类标签数据建立各类云的样本库,利用数据集蒸馏算法训练样本库得到云类判别图,将预测云图与云类判别图匹配计算,获得云类聚合匹配特征;最后,利用上述特征、云量特征以及数值天气预报数据建立长短期记忆网络模型,对光伏发电功率进行超短期预测。利用某光伏电站数据进行验证,结果显示,该文所提模型能准确描述云层的各项特征,有效提升光伏功率预测精度。 展开更多
关键词 数据集蒸馏 卫星云图 云分类 流法 短期光伏功率预测
在线阅读 下载PDF
改进黑猩猩算法的光伏发电功率短期预测 被引量:5
16
作者 谢国民 陈天香 《电力系统及其自动化学报》 CSCD 北大核心 2024年第2期135-143,共9页
针对晴空、非晴空条件下光伏出力预测精度不高等问题,提出一种改进K均值(K-means++)算法和黑猩猩优化算法CHOA(chimpanzee optimization algorithm)相结合,优化最小二乘支持向量机LSSVM(least squares support vector machine)的模型,... 针对晴空、非晴空条件下光伏出力预测精度不高等问题,提出一种改进K均值(K-means++)算法和黑猩猩优化算法CHOA(chimpanzee optimization algorithm)相结合,优化最小二乘支持向量机LSSVM(least squares support vector machine)的模型,进行光伏功率预测。首先,利用密度聚类和混合评价函数改进K-means++对原始数据进行自适应类别划分。其次,通过相关性分析和随机森林特征提取构建模型的输入特征集。最后,根据特征集建立基于DK-PCHOA-LSSVM的短期光伏发电预测模型。结合实际算例,结果表明:该模型在恶劣天气下预测精度明显优于其他模型,验证了其有效性和优越性。 展开更多
关键词 功率短期预测 自适应聚类 最小二乘支持向量机 黑猩猩优化算法 极端天气
在线阅读 下载PDF
基于k-sums分段聚类的动态组合学习光伏短期功率预测
17
作者 吴家葆 曾国辉 张振华 《电子科技》 2024年第4期69-76,共8页
目前单一模型预测精度存在难以随着功率波动保持最优的问题,为提高并网系统运行的稳定性和电网的节能调度,文中提出了一种基于k-sums分层聚类的动态学习组合光伏短期功率预测方法。利用k-sums算法经过分段聚类,将天气类型分为晴天A 1、... 目前单一模型预测精度存在难以随着功率波动保持最优的问题,为提高并网系统运行的稳定性和电网的节能调度,文中提出了一种基于k-sums分层聚类的动态学习组合光伏短期功率预测方法。利用k-sums算法经过分段聚类,将天气类型分为晴天A 1、多云A 2、阴雨天B。通过TCN(Temporal Convolutional Network)提取数据的时序特征,并结合GRU(Gate Recurrent Unit)建立融合提取时序特征模块的改进GRU结构,以达到对时序特征敏感的效果。将改进GRU结构与SVM(Support Vector Machine)动态组合,使用Elastic Net算法输出最佳权重值叠加得到最终预测值。文中采用江苏某地区的光伏发电功率数据及对应的气象数据对所提方法进行验证,结果表明动态组合学习模型的MAE(Mean Absolute Error)为1.888,RMSE(Root Mean Squared Error)为2.403。 展开更多
关键词 k-sums 分层聚类 TCN 改进GRU SVM 动态组合学习 Elastic Net 短期功率预测
在线阅读 下载PDF
基于CEEMD-LSTM光伏短期功率预测 被引量:5
18
作者 梁亚峰 马立红 +3 位作者 邱剑洪 冯在顺 何雷震 刘承锡 《科学技术与工程》 北大核心 2024年第13期5396-5405,共10页
为解决传统机器学习方法在面对多变的环境因素和不平稳序列时导致光伏功率预测精度低的问题,提出一种基于完全经验模态分解(complete ensemble empirical mode decomposition,CEEMD)和长短期记忆神经网络(long short-term memory,LSTM)... 为解决传统机器学习方法在面对多变的环境因素和不平稳序列时导致光伏功率预测精度低的问题,提出一种基于完全经验模态分解(complete ensemble empirical mode decomposition,CEEMD)和长短期记忆神经网络(long short-term memory,LSTM)相结合的光伏短期功率预测模型。首先,充分考虑影响光伏出力的太阳辐照度、相对湿度、大气压力和空气温度4种环境因素,通过CEEMD将气象因素特征曲线分解为多模态特征数据,准确捕捉其不同的时间尺度和频率特征,进而充分保留环境数据的不平稳特征。其次,在此基础上,利用LSTM网络对多模态特征数据进行时间序列建模,旨在保留时间序列的季节性和不平稳特征,为后续建模提供更准确的输入特征。最后,通过对分解后的信号开展训练,根据输入数据的变化自适应调整预测模型参数,迭代生成特定场景下的预测模型,从而灵活应对实时环境变化,得到相应功率预测结果。在海南一孤立海岛分布式光伏电站37 kW子阵的8个月气象和功率数据集进行验证,实验结果表明,所提方法在保留环境数据细节和局部特性上具有显著优势,在不同气象条件均具有良好的自适应性,有效提高了光伏短期功率预测精度。 展开更多
关键词 发电 完全经验模态分解 短期记忆神经网络 短期功率预测 不平稳特征 多模态特征数据
在线阅读 下载PDF
基于集成机器学习模型的短期光伏出力区间预测 被引量:2
19
作者 陈习勋 吴凯彤 +1 位作者 何杰 彭显刚 《智慧电力》 北大核心 2024年第2期87-93,107,共8页
为全面深挖影响光伏出力因素之间的关联信息,进一步提高机器学习模型在短期光伏出力区间预测的精度,提出一种基于集成机器学习模型的短期光伏出力区间预测方法。首先,利用快速相关性过滤(FCBF)的特征选择算法对多维的历史光伏数据及气... 为全面深挖影响光伏出力因素之间的关联信息,进一步提高机器学习模型在短期光伏出力区间预测的精度,提出一种基于集成机器学习模型的短期光伏出力区间预测方法。首先,利用快速相关性过滤(FCBF)的特征选择算法对多维的历史光伏数据及气象数据进行最优特征的提取;然后,在集成多个机器学习模型的基础上,收集训练过程中的预测误差,通过最大似然估计获取预测误差的概率分布,得到预测区间的上下限;最后,结合集成学习模型预测得到光伏出力曲线,进而得到最终的日前光伏出力预测区间。最后通过算例验证了所提模型的可靠性与优越性。 展开更多
关键词 短期光伏功率预测 特征选择 机器学习 区间预测
在线阅读 下载PDF
基于相似日分析和改进鲸鱼算法优化LSTM网络模型的光伏功率短期预测
20
作者 薛阳 李金星 +2 位作者 杨江天 李清 丁凯 《南方电网技术》 CSCD 北大核心 2024年第11期97-105,共9页
为了解决环境温度、风速和太阳辐照度等诸多因素对光伏发电预测的制约,提出了一种基于相似日分析和改进鲸鱼算法优化的长短期记忆(long short-term memory,LSTM)神经网络模型来实现光伏功率短期预测。首先,采用Pearson相关系数进行特征... 为了解决环境温度、风速和太阳辐照度等诸多因素对光伏发电预测的制约,提出了一种基于相似日分析和改进鲸鱼算法优化的长短期记忆(long short-term memory,LSTM)神经网络模型来实现光伏功率短期预测。首先,采用Pearson相关系数进行特征选择以去除与光伏输出功率不相关的气象特征;其次,针对相似气象情况下光伏电站发电功率接近的实际情况,采用灰色关联分析(gray relation analysis,GRA)选取与预测日气象特征相似的日期作为训练集;然后,提出一种改进鲸鱼算法(improved whale algorithm,IWOA)来优化LSTM深度神经网络的超参数,使预测模型的均方根误差达到最小;最后,以澳洲Yulara沙漠3号光伏电站的光伏发电历史数据作为实验数据,用GRA-IWOALSTM神经网络模型进行预测。仿真结果表明,在不同的天气类型下与其他模型的预测效果相比,GRA-IWOA-LSTM模型的预测结果精度更高。 展开更多
关键词 相似日 功率短期预测 灰色关联分析 改进鲸鱼优化算法 短期记忆神经网络
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部