We report on a cross-sectional high resolution transmission electron microscope study of lead sulfide nanocrystal quantum dots (NCQDs) dispersed on electron-transparent silicon nanopillars that enables nearly atomic...We report on a cross-sectional high resolution transmission electron microscope study of lead sulfide nanocrystal quantum dots (NCQDs) dispersed on electron-transparent silicon nanopillars that enables nearly atomically-resolved simultaneous imaging of the entire composite: the quantum dot, the interfacial region, and the silicon substrate. Considerable richness in the nanocrystal shape and orientation with respect to the substrate lattice is observed. The average NCQD-substrate separation is found to be significantly smaller than the length of the ligands on the NCQDs. Complementary photoluminescence measurements show that light emission from PbS NCQDs on silicon is effectively quenched which we attribute to intrinsic mechanisms of energy and charge transfer from PbS NCQDs to Si.展开更多
Flexible and broadband photodetectors have drawn extensive attention due to their potential application in foldable displays, optical communications, environmental monitoring, etc. In this work, a flexible photodetect...Flexible and broadband photodetectors have drawn extensive attention due to their potential application in foldable displays, optical communications, environmental monitoring, etc. In this work, a flexible photodetector based on the crystalline PbS quantum dots(QDs)/ZnO nanoparticles(NPs) heterostructure was proposed. The photodetector exhibits a broadband response from ultraviolet-visible(UV-Vis)to near infrared detector(NIR) range with a remarkable current on/off ratio of 7.08×10^3under 375 nm light illumination.Compared with pure ZnO NPs, the heterostructure photodetector shows the three orders of magnitude higher responsivity in Vis and NIR range, and maintains its performance in the UV range simultaneously. The photodetector demonstrates a high responsivity and detectivity of4.54 A W-1and 3.98×10^12Jones. In addition, the flexible photodetectors exhibit excellent durability and stability even after hundreds of times bending. This work paves a promising way for constructing next-generation high-performance flexible and broadband optoelectronic devices.展开更多
文摘We report on a cross-sectional high resolution transmission electron microscope study of lead sulfide nanocrystal quantum dots (NCQDs) dispersed on electron-transparent silicon nanopillars that enables nearly atomically-resolved simultaneous imaging of the entire composite: the quantum dot, the interfacial region, and the silicon substrate. Considerable richness in the nanocrystal shape and orientation with respect to the substrate lattice is observed. The average NCQD-substrate separation is found to be significantly smaller than the length of the ligands on the NCQDs. Complementary photoluminescence measurements show that light emission from PbS NCQDs on silicon is effectively quenched which we attribute to intrinsic mechanisms of energy and charge transfer from PbS NCQDs to Si.
基金funded by the National Natural Science Foundation of China (U1432249)the National Key R&D Program of China (2017YFA0205002)+3 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)supported by Collaborative Innovation Center of Suzhou Nano Science & Technology and Joint International Research Laboratory of Carbon-Based Functional Materials and Devicesthe support from China Postdoctoral Science Foundation (2017M610346)Natural Science Foundation of Jiangsu Province of China (BK20170343)
文摘Flexible and broadband photodetectors have drawn extensive attention due to their potential application in foldable displays, optical communications, environmental monitoring, etc. In this work, a flexible photodetector based on the crystalline PbS quantum dots(QDs)/ZnO nanoparticles(NPs) heterostructure was proposed. The photodetector exhibits a broadband response from ultraviolet-visible(UV-Vis)to near infrared detector(NIR) range with a remarkable current on/off ratio of 7.08×10^3under 375 nm light illumination.Compared with pure ZnO NPs, the heterostructure photodetector shows the three orders of magnitude higher responsivity in Vis and NIR range, and maintains its performance in the UV range simultaneously. The photodetector demonstrates a high responsivity and detectivity of4.54 A W-1and 3.98×10^12Jones. In addition, the flexible photodetectors exhibit excellent durability and stability even after hundreds of times bending. This work paves a promising way for constructing next-generation high-performance flexible and broadband optoelectronic devices.