对时间复杂度信息的学习和处理是人脑的一大优势,而储备池计算是一种低训练代价、低硬件开销的循环神经网络,在时序信息处理方面具有广泛的应用。近日,北京大学科研团队在Advanced Materials杂志发表了题为Multilayer Reservoir Computi...对时间复杂度信息的学习和处理是人脑的一大优势,而储备池计算是一种低训练代价、低硬件开销的循环神经网络,在时序信息处理方面具有广泛的应用。近日,北京大学科研团队在Advanced Materials杂志发表了题为Multilayer Reservoir Computing Based on Ferroelectric α-In_(2)Se_(3) for Hierarchical Information Processing的论文,该团队首次采用忆阻器单元构建了深度储备池计算硬件,通过储备池层数的增加实现了时序信息处理性能的显著提升。展开更多
对时间复杂度信息的学习和处理是人脑的一大优势,而储备池计算是一种低训练代价、低硬件开销的循环神经网络,在时序信息处理方面具有广泛的应用。近日,北京大学科研团队在《Advanced Materials》杂志发表了题为“Multilayer Reservoir C...对时间复杂度信息的学习和处理是人脑的一大优势,而储备池计算是一种低训练代价、低硬件开销的循环神经网络,在时序信息处理方面具有广泛的应用。近日,北京大学科研团队在《Advanced Materials》杂志发表了题为“Multilayer Reservoir Computing Based on Ferro⁃electricα-In2Se3 for Hierarchical Information Processing”的论文,该团队首次采用忆阻器单元构建了深度储备池计算硬件。展开更多
文摘对时间复杂度信息的学习和处理是人脑的一大优势,而储备池计算是一种低训练代价、低硬件开销的循环神经网络,在时序信息处理方面具有广泛的应用。近日,北京大学科研团队在Advanced Materials杂志发表了题为Multilayer Reservoir Computing Based on Ferroelectric α-In_(2)Se_(3) for Hierarchical Information Processing的论文,该团队首次采用忆阻器单元构建了深度储备池计算硬件,通过储备池层数的增加实现了时序信息处理性能的显著提升。
文摘对时间复杂度信息的学习和处理是人脑的一大优势,而储备池计算是一种低训练代价、低硬件开销的循环神经网络,在时序信息处理方面具有广泛的应用。近日,北京大学科研团队在《Advanced Materials》杂志发表了题为“Multilayer Reservoir Computing Based on Ferro⁃electricα-In2Se3 for Hierarchical Information Processing”的论文,该团队首次采用忆阻器单元构建了深度储备池计算硬件。