碱基编辑技术起源于CRISPR/Cas系统,是目前最新的基因定点修饰技术。根据碱基编辑器的功能特点,可将碱基编辑器分为胞嘧啶碱基编辑器(cytosine base editor,CBE)、腺嘌呤碱基编辑器(adenine base editor,ABE)、糖基化酶碱基编辑器(glyco...碱基编辑技术起源于CRISPR/Cas系统,是目前最新的基因定点修饰技术。根据碱基编辑器的功能特点,可将碱基编辑器分为胞嘧啶碱基编辑器(cytosine base editor,CBE)、腺嘌呤碱基编辑器(adenine base editor,ABE)、糖基化酶碱基编辑器(glycosylase base editor,GBE)、腺嘌呤碱基颠换编辑器(adenine transversion base editor,AYBE)、双碱基编辑器(dual base editor,DBE)和引导编辑器(prime editor,PE)。自碱基编辑系统诞生以来,已经广泛运用于动植物的研究中,并且已经证明了它在动植物遗传改良和疾病治疗中具有巨大应用价值。猪作为一种重要的农业经济动物和优良的动物疾病模型,对其进行遗传改良则变得十分重要。碱基编辑技术因其操作便利、高效、副产物少以及性价比高等特点,被迅速应用于动植物的遗传改良,并为人类的基因治疗提供技术支持。本文着重介绍了碱基编辑技术的开发、优化、应用特点、存在的问题以及对未来的展望,并总结了其在猪中的应用。以期为相关科研工作者了解碱基编辑技术提供参考。展开更多
人类遗传病致病基因一半以上是点突变,对其进行精确、高效的原位修复是遗传病治疗最理想的方式。鉴于点突变中大部分为鸟嘌呤(G)与腺嘌呤(A)之间的转换,而基于CRISPR/Cas9(clustered regularly interspaced short palindromic repeats-C...人类遗传病致病基因一半以上是点突变,对其进行精确、高效的原位修复是遗传病治疗最理想的方式。鉴于点突变中大部分为鸟嘌呤(G)与腺嘌呤(A)之间的转换,而基于CRISPR/Cas9(clustered regularly interspaced short palindromic repeats-Cas9)系统的腺嘌呤碱基编辑器(adenine base editor,ABE)通过将A转换为G,从而修复这些突变,因此该种碱基编辑在人类遗传病治疗中特别重要。近年来,ABE不断被优化,特别是碱基编辑器的活性和保真性均被提高。本文总结了有关ABE的研究进展,特别是ABE研发过程中重要的突变体,同时对现有ABE仍然存在的缺陷进行了思考。另外,对ABE在临床(含临床前研究)方面的相关应用也进行了回顾。本文为发现和优化新型ABE及其应用提供参考。展开更多
碱基编辑技术(base editing)是基于CRISPR/Cas系统发展起来的新型靶基因修饰技术,目前依据碱基修饰酶的不同可分为胞嘧啶碱基编辑器(cytosine base editor,CBE)和腺嘌呤碱基编辑器(adenine base editor,ABE)。这两类碱基编辑系统利用胞...碱基编辑技术(base editing)是基于CRISPR/Cas系统发展起来的新型靶基因修饰技术,目前依据碱基修饰酶的不同可分为胞嘧啶碱基编辑器(cytosine base editor,CBE)和腺嘌呤碱基编辑器(adenine base editor,ABE)。这两类碱基编辑系统利用胞嘧啶脱氨酶或人工进化的腺嘌呤脱氨酶对靶位点进行精准的碱基编辑,最终可以分别实现C-T(G-A)或A-G(T-C)的碱基替换。碱基编辑技术自2016年被开发以来,因其高效、不依赖DNA双链断裂产生、无需供体DNA参与等优势,已经成功应用在各种动物、植物及其他生物中,为基因治疗及精准作物育种等领域提供了重要技术支撑。本文从碱基编辑技术的特点、开发过程、优化、应用、脱靶效应及改善策略等方面进行了系统介绍,最后对未来需要迫切解决的一些问题进行了分析和展望,以期为相关领域的科研人员进一步了解、使用及优化碱基编辑系统提供参考。展开更多
单碱基编辑技术是以CRISPR/Cas9(Clustered Regularly Interspaced Short Palindromic Repeats)系统为基础衍生出的能够对基因组进行精确定点编辑的一项新技术。与CRISPR/Cas9技术系统不同,单碱基编辑系统通过在双链造成单切口后对碱基...单碱基编辑技术是以CRISPR/Cas9(Clustered Regularly Interspaced Short Palindromic Repeats)系统为基础衍生出的能够对基因组进行精确定点编辑的一项新技术。与CRISPR/Cas9技术系统不同,单碱基编辑系统通过在双链造成单切口后对碱基进行单碱基的替换,有效解决CRISPR/Cas9基因编辑系统双链断裂易产生片段插入或者缺失的缺陷,提高单碱基编辑的精确性及效率。本文介绍了胞嘧啶碱基编辑器(Cytosine Base Editor)、腺嘌呤碱基编辑器(Adenine Base Editor)以及最新的引导编辑系统(Prime Editing)的建立过程、原理、优缺点及其在动物育种中的应用,并对单碱基编辑技术发展进行展望。展开更多
在众多生物中利用具有切割作用的CRISPR/Cas9系统与非同源性末端连接(non-homologous end joining,NHEJ)修复系统或同源性末端连接(homology-directed repair,HDR)修复系统共同完成基因编辑工作都有报道。但是由于NHEJ的不精确性以及一...在众多生物中利用具有切割作用的CRISPR/Cas9系统与非同源性末端连接(non-homologous end joining,NHEJ)修复系统或同源性末端连接(homology-directed repair,HDR)修复系统共同完成基因编辑工作都有报道。但是由于NHEJ的不精确性以及一些微生物中HDR效率较低导致生物体死亡限制了该工具的发展。基于CRISPR/dCas9系统构建而成的DNA碱基编辑器作为一种编辑工具,可靶向地实现碱基之间的转换,且不导致微生物死亡。DNA碱基编辑器在微生物中已经实现靶向编辑工作,可以同时多个位点进行编辑,同时可以利用该工具将编码氨基酸的密码子转化为终止密码子,提前终止翻译过程实现对基因的失活。本文主要对DNA碱基编辑器的作用原理,发展历程以及在微生物中的应用做了概述,最后提出了该工具存在的一些不足之处,并结合相关研究展望了未来的研究方向。为在微生物中开发与利用DNA碱基编辑的研究提供了思路。展开更多
肌肉生长抑制素(myostatin,MSTN)可负调控骨骼肌的发育。本研究利用胞嘧啶碱基编辑器(cytidine base editor,CBE)在哈萨克羊MSTN基因编码区提前引入终止密码子,以期达到敲除MSTN基因的目的。共设计2条靶向哈萨克羊MSTN基因不同外显子的s...肌肉生长抑制素(myostatin,MSTN)可负调控骨骼肌的发育。本研究利用胞嘧啶碱基编辑器(cytidine base editor,CBE)在哈萨克羊MSTN基因编码区提前引入终止密码子,以期达到敲除MSTN基因的目的。共设计2条靶向哈萨克羊MSTN基因不同外显子的sgRNAs,分别连接至pGL3-U6-sgRNA-PGK-puromycin质粒,并与pCMV-AncBE4 max-P2A-GFP质粒共转染哈萨克羊胎儿成纤维细胞,经CruiserTM酶酶切检测、Sanger测序和TA克隆分析。结果显示,成功筛选出可以在哈萨克羊MSTN基因外显子提前引入终止密码子的2条sgRNAs,其中STOPsg-1靶位点编辑效率为26.7%,STOPsg-2靶位点的编辑效率为6.7%。本研究成功运用CBE(AncBE4 max)技术在哈萨克羊胎儿成纤维细胞MSTN基因编码区实现定点编辑,为培育精确编辑MSTN基因的哈萨克羊奠定基础。展开更多
尽管新一代基因编辑技术CRISPR/Cas9拥有众多优点,但在执行单个碱基水平的突变时其效率往往很低。由于DNA的双链断裂具有很多的不确定性,又加上基于供体模板的同源末端重组(homology directed repair,HDR)仅仅发生在分裂活跃的细胞中,...尽管新一代基因编辑技术CRISPR/Cas9拥有众多优点,但在执行单个碱基水平的突变时其效率往往很低。由于DNA的双链断裂具有很多的不确定性,又加上基于供体模板的同源末端重组(homology directed repair,HDR)仅仅发生在分裂活跃的细胞中,而非同源末端连接(non-homologous end joining,NHEJ)在整个细胞周期中都可以发生,因此,传统CRISPR/Cas9在单碱基分辨率上进行基因编辑时存在一定弊端。碱基编辑器(base editor,BE)的出现则在一定程度上弥补了这一缺陷。胞嘧啶碱基编辑器(cytosine base editor,CBE)或腺嘌呤碱基编辑器(adenine base editor,ABE)都能够在不引起双链断裂的情况下实现C·G到T·A或A·T到G·C的转换,极大地提高了单碱基编辑的应用价值。本文侧重对出现较早的CBE的原理、发展、应用及存在的问题进行综述,以期为高效单碱基突变工具在生物医学和畜牧业生产中的应用提供有益的参考和借鉴。展开更多
文摘碱基编辑技术起源于CRISPR/Cas系统,是目前最新的基因定点修饰技术。根据碱基编辑器的功能特点,可将碱基编辑器分为胞嘧啶碱基编辑器(cytosine base editor,CBE)、腺嘌呤碱基编辑器(adenine base editor,ABE)、糖基化酶碱基编辑器(glycosylase base editor,GBE)、腺嘌呤碱基颠换编辑器(adenine transversion base editor,AYBE)、双碱基编辑器(dual base editor,DBE)和引导编辑器(prime editor,PE)。自碱基编辑系统诞生以来,已经广泛运用于动植物的研究中,并且已经证明了它在动植物遗传改良和疾病治疗中具有巨大应用价值。猪作为一种重要的农业经济动物和优良的动物疾病模型,对其进行遗传改良则变得十分重要。碱基编辑技术因其操作便利、高效、副产物少以及性价比高等特点,被迅速应用于动植物的遗传改良,并为人类的基因治疗提供技术支持。本文着重介绍了碱基编辑技术的开发、优化、应用特点、存在的问题以及对未来的展望,并总结了其在猪中的应用。以期为相关科研工作者了解碱基编辑技术提供参考。
文摘人类遗传病致病基因一半以上是点突变,对其进行精确、高效的原位修复是遗传病治疗最理想的方式。鉴于点突变中大部分为鸟嘌呤(G)与腺嘌呤(A)之间的转换,而基于CRISPR/Cas9(clustered regularly interspaced short palindromic repeats-Cas9)系统的腺嘌呤碱基编辑器(adenine base editor,ABE)通过将A转换为G,从而修复这些突变,因此该种碱基编辑在人类遗传病治疗中特别重要。近年来,ABE不断被优化,特别是碱基编辑器的活性和保真性均被提高。本文总结了有关ABE的研究进展,特别是ABE研发过程中重要的突变体,同时对现有ABE仍然存在的缺陷进行了思考。另外,对ABE在临床(含临床前研究)方面的相关应用也进行了回顾。本文为发现和优化新型ABE及其应用提供参考。
文摘碱基编辑(base editing)是一种基于CRISPR/Cas(clustered regularly interspaced short palindromic repeats)系统发展起来的新型基因修饰技术,它成功地将切割DNA双链的“剪刀”改变为特定碱基的“修正器”,该技术能在不诱导双链DNA断裂的情况下,通过sgRNA引导碱基修饰酶至特定位点,进而实现碱基的替换。碱基编辑器主要分为胞嘧啶碱基编辑器(cytidine base editors, CBEs)、腺嘌呤碱基编辑器(adenine base editors, ABEs)和Prime编辑器(prime editors, PEs),CBEs可以完成胞嘧啶(C)到胸腺嘧啶(T)的转换,ABEs能将腺嘌呤(A)转换成鸟嘌呤(G),PEs可以实现任意碱基间的转换。文章对碱基编辑的基本原理、发展历史、使用方法、应用策略和发展前景等进行综述,以期为其在分子育种和基因治疗等领域的应用提供新的思路。
文摘碱基编辑技术(base editing)是基于CRISPR/Cas系统发展起来的新型靶基因修饰技术,目前依据碱基修饰酶的不同可分为胞嘧啶碱基编辑器(cytosine base editor,CBE)和腺嘌呤碱基编辑器(adenine base editor,ABE)。这两类碱基编辑系统利用胞嘧啶脱氨酶或人工进化的腺嘌呤脱氨酶对靶位点进行精准的碱基编辑,最终可以分别实现C-T(G-A)或A-G(T-C)的碱基替换。碱基编辑技术自2016年被开发以来,因其高效、不依赖DNA双链断裂产生、无需供体DNA参与等优势,已经成功应用在各种动物、植物及其他生物中,为基因治疗及精准作物育种等领域提供了重要技术支撑。本文从碱基编辑技术的特点、开发过程、优化、应用、脱靶效应及改善策略等方面进行了系统介绍,最后对未来需要迫切解决的一些问题进行了分析和展望,以期为相关领域的科研人员进一步了解、使用及优化碱基编辑系统提供参考。
文摘单碱基编辑技术是以CRISPR/Cas9(Clustered Regularly Interspaced Short Palindromic Repeats)系统为基础衍生出的能够对基因组进行精确定点编辑的一项新技术。与CRISPR/Cas9技术系统不同,单碱基编辑系统通过在双链造成单切口后对碱基进行单碱基的替换,有效解决CRISPR/Cas9基因编辑系统双链断裂易产生片段插入或者缺失的缺陷,提高单碱基编辑的精确性及效率。本文介绍了胞嘧啶碱基编辑器(Cytosine Base Editor)、腺嘌呤碱基编辑器(Adenine Base Editor)以及最新的引导编辑系统(Prime Editing)的建立过程、原理、优缺点及其在动物育种中的应用,并对单碱基编辑技术发展进行展望。
文摘在众多生物中利用具有切割作用的CRISPR/Cas9系统与非同源性末端连接(non-homologous end joining,NHEJ)修复系统或同源性末端连接(homology-directed repair,HDR)修复系统共同完成基因编辑工作都有报道。但是由于NHEJ的不精确性以及一些微生物中HDR效率较低导致生物体死亡限制了该工具的发展。基于CRISPR/dCas9系统构建而成的DNA碱基编辑器作为一种编辑工具,可靶向地实现碱基之间的转换,且不导致微生物死亡。DNA碱基编辑器在微生物中已经实现靶向编辑工作,可以同时多个位点进行编辑,同时可以利用该工具将编码氨基酸的密码子转化为终止密码子,提前终止翻译过程实现对基因的失活。本文主要对DNA碱基编辑器的作用原理,发展历程以及在微生物中的应用做了概述,最后提出了该工具存在的一些不足之处,并结合相关研究展望了未来的研究方向。为在微生物中开发与利用DNA碱基编辑的研究提供了思路。
文摘肌肉生长抑制素(myostatin,MSTN)可负调控骨骼肌的发育。本研究利用胞嘧啶碱基编辑器(cytidine base editor,CBE)在哈萨克羊MSTN基因编码区提前引入终止密码子,以期达到敲除MSTN基因的目的。共设计2条靶向哈萨克羊MSTN基因不同外显子的sgRNAs,分别连接至pGL3-U6-sgRNA-PGK-puromycin质粒,并与pCMV-AncBE4 max-P2A-GFP质粒共转染哈萨克羊胎儿成纤维细胞,经CruiserTM酶酶切检测、Sanger测序和TA克隆分析。结果显示,成功筛选出可以在哈萨克羊MSTN基因外显子提前引入终止密码子的2条sgRNAs,其中STOPsg-1靶位点编辑效率为26.7%,STOPsg-2靶位点的编辑效率为6.7%。本研究成功运用CBE(AncBE4 max)技术在哈萨克羊胎儿成纤维细胞MSTN基因编码区实现定点编辑,为培育精确编辑MSTN基因的哈萨克羊奠定基础。
文摘尽管新一代基因编辑技术CRISPR/Cas9拥有众多优点,但在执行单个碱基水平的突变时其效率往往很低。由于DNA的双链断裂具有很多的不确定性,又加上基于供体模板的同源末端重组(homology directed repair,HDR)仅仅发生在分裂活跃的细胞中,而非同源末端连接(non-homologous end joining,NHEJ)在整个细胞周期中都可以发生,因此,传统CRISPR/Cas9在单碱基分辨率上进行基因编辑时存在一定弊端。碱基编辑器(base editor,BE)的出现则在一定程度上弥补了这一缺陷。胞嘧啶碱基编辑器(cytosine base editor,CBE)或腺嘌呤碱基编辑器(adenine base editor,ABE)都能够在不引起双链断裂的情况下实现C·G到T·A或A·T到G·C的转换,极大地提高了单碱基编辑的应用价值。本文侧重对出现较早的CBE的原理、发展、应用及存在的问题进行综述,以期为高效单碱基突变工具在生物医学和畜牧业生产中的应用提供有益的参考和借鉴。